Тип 18 № 517436 

Классификатор алгебры: Уравнения с параметром, Уравнения смешанного типа
Методы алгебры: Перебор случаев, Перебор случаев
Задача с параметром. Уравнения с параметром, содержащие радикалы
i
Найдите все значения а, при каждом из которых уравнение
имеет хотя бы одно решение на отрезке [0; 1].
Решение. Запишем уравнение в виде и рассмотрим два случая.
Первый случай: при при выполнении условий
то есть если
Второй случай:
Корень лежит на отрезке [0; 1] при
Для второго случая получаем
Таким образом, исходное уравнение имеет хотя бы один корень на отрезке [0; 1] при
Ответ:
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен правильный ответ. | 4 |
| С помощью верного рассуждения получено множество значений a, отличающееся от искомого конечным числом точек. | 3 |
| С помощью верного рассуждения получены все граничные точки искомого множества значений a | 2 |
| Верно найдена хотя бы одна граничная точка искомого множества значений a | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
Ответ: 
517436
Классификатор алгебры: Уравнения с параметром, Уравнения смешанного типа
Методы алгебры: Перебор случаев, Перебор случаев
PDF-версии: