
В основании правильной четырёхугольной пирамиды MABCD лежит квадрат ABCD со стороной 8. Противоположные боковые рёбра пирамиды попарно перпендикулярны. Через середины рёбер MA и MB проведена плоскость параллельная ребру MС.
а) Докажите, что сечение плоскостью пирамиды MABC является параллелограммом.
б) Найдите площадь сечения пирамиды MABC плоскостью
Решение. а) Пусть точка Q — середина ребра MA, а точка K — середина ребра MB. Так как плоскость α параллельна ребру MC, пересекает плоскость BMC по отрезку KL, параллельному ребру MC. Следовательно, KL — средняя линия треугольника BMC и L — середина BC. Так как QK || AB плоскость α пересекает основание ABC пирамиды по средней линии, поэтому плоскость &\alpha; проходит через точку O — середину отрезка AC. Таким образом, сечение — четырёхугольник QKLO, в котором стороны KL и QO параллельны отрезку MC и равны его половине. Значит, QKLO — параллелограмм.
б) Отметим точку F — середину отрезка QK и рассмотрим плоскость MOF. Прямая QK перпендикулярна прямым FM и MO, следовательно, она перпендикулярна плоскости MFO, поэтому она перпендикулярна отрезку OF. Таким образом, отрезок OF служит высотой параллелограмма QKLO. Сечение пирамиды MABCD плоскостью MOF — равнобедренный треугольник NMG. Отрезок OF является медианой прямоугольного треугольника MOG, проведённой к его гипотенузе, поэтому
По условию треугольник AMC прямоугольный и равнобедренный, поэтому
и то же верно для других боковых рёбер. Следовательно, все боковые грани пирамиды — равносторонние треугольники. Тогда и
Таким образом, искомая площадь
Ответ:
Примечание.
Напомним, что в условии говорится о сечении пирамиды MABC, то есть треугольной пирамиды, которая является частью четырехугольной пирамиды MABCD.
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: