Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Задания
i

Мо­то­цик­лист, дви­жу­щий­ся по го­ро­ду со ско­ро­стью  v _0 = 90 км/ч, вы­ез­жа­ет из него и сразу после вы­ез­да на­чи­на­ет раз­го­нять­ся с по­сто­ян­ным уско­ре­ни­ем a = 16 км/ч2. Рас­сто­я­ние от мо­то­цик­ли­ста до го­ро­да, из­ме­ря­е­мое в ки­ло­мет­рах, опре­де­ля­ет­ся вы­ра­же­ни­ем S = v _0 t плюс дробь: чис­ли­тель: at в квад­ра­те , зна­ме­на­тель: 2 конец дроби , где t  — время в часах. Опре­де­ли­те наи­боль­шее время, в те­че­ние ко­то­ро­го мо­то­цик­лист будет на­хо­дить­ся в зоне функ­ци­о­ни­ро­ва­ния со­то­вой связи, если опе­ра­тор га­ран­ти­ру­ет по­кры­тие на рас­сто­я­нии не далее чем в 72 км от го­ро­да. Ответ вы­ра­зи­те в ми­ну­тах.

ИЛИ

Перед от­прав­кой теп­ло­воз издал гудок с ча­сто­той f_0 = 295 Гц. Чуть позже издал гудок подъ­ез­жа­ю­щий к плат­фор­ме теп­ло­воз. Из-за эф­фек­та До­пле­ра ча­сто­та вто­ро­го гудка f боль­ше пер­во­го: она за­ви­сит от ско­ро­сти теп­ло­во­за по за­ко­ну f левая круг­лая скоб­ка v пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: f_0 , зна­ме­на­тель: 1 минус дробь: чис­ли­тель: v , зна­ме­на­тель: c конец дроби конец дроби  (Гц), где c  — ско­рость звука (в м/с). Че­ло­век, сто­я­щий на плат­фор­ме, раз­ли­ча­ет сиг­на­лы по тону, если они от­ли­ча­ют­ся не менее чем на 5 Гц. Опре­де­ли­те, с какой ми­ни­маль­ной ско­ро­стью при­бли­жал­ся к плат­фор­ме теп­ло­воз, если че­ло­век смог раз­ли­чить сиг­на­лы, а c = 300 м/с. Ответ вы­ра­зи­те в м/с.

ИЛИ

Ав­то­мо­биль раз­го­ня­ет­ся на пря­мо­ли­ней­ном участ­ке шоссе с по­сто­ян­ным уско­ре­ни­ем a км/ч 2. Ско­рость вы­чис­ля­ет­ся по фор­му­ле  v = ко­рень из: на­ча­ло ар­гу­мен­та: 2la конец ар­гу­мен­та , где l  — прой­ден­ный ав­то­мо­би­лем путь. Най­ди­те уско­ре­ние, с ко­то­рым дол­жен дви­гать­ся ав­то­мо­биль, чтобы, про­ехав 0,5 ки­ло­мет­ра, при­об­ре­сти ско­рость 70 км/ч. Ответ вы­ра­зи­те в км/ч2.