СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Поиск
'



Всего: 59    1–20 | 21–40 | 41–59

Добавить в вариант

Задание 17 № 512441

Баржа грузоподъемностью 134 тонны перевозит контейнеры типов А и В. Количество загруженных на баржу контейнеров типа В не менее чем на 25% превосходит количество загруженных контейнеров типа А. Вес и стоимость одного контейнера типа А составляет 2 тонны и 5 млн. руб., контейнера типа В – 5 тонн и 7 млн. руб.соответственно. Определите наибольшую возможную суммарную стоимость (в млн. руб.) всех контейнеров, перевозимых баржей при данных условиях.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 134.
Решение · ·

Задание 17 № 513208

Саша положил некоторую сумму в банк на 4 года под 10% годовых. Одновременно с ним Паша такую же сумму положил на два года в другой банк под 15% годовых. Через два года Паша решил продлить срок вклада еще на 2 года. Однако к тому времени процентная ставка по вкладам в этом банке изменилась и составляла уже p% годовых. В итоге через четыре года на счету у Паши оказалась большая сумма, чем у Саши, причем эта разность составила менее 10% от суммы, вложенной каждым первоначально. Найдите наибольшее возможное целое значение процентной ставки.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 142.

Задание 17 № 511887

Алексей вышел из дома на прогулку со скоростью v км/ч. После того, как он прошел 6 км, из дома следом за ним выбежала собака Жучка, скорость которой была на 9 км/ч больше скорости Алексея. Когда Жучка догнала хозяина, они повернули назад и вместе возвратились домой со скоростью 4 км/ч. Найдите значение v, при котором время прогулки Алексея окажется наименьшим. Сколько при этом составит время его прогулки?

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 116.

Задание 17 № 513297

В двух областях есть по 100 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,3 кг алюминия или 0,1 кг никеля. Во второй области для добычи x кг алюминия в день требуется x2 человеко-часов труда, а для добычи у кг никеля в день требуется y2 человеко-часов труда.

Обе области поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 1 кг алюминия приходится 1 кг никеля. При этом области договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?


Аналоги к заданию № 513289: 513294 513297 513293 515709 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко. 2016 г.

Задание 17 № 513299

В двух шахтах добывают алюминий и никель. В первой шахте имеется 20 рабочих, каждый из которых готов трудиться 5 часов в день. При этом один рабочий за час добывает 1 кг алюминия или 2 кг никеля. Во второй шахте имеется 100 рабочих, каждый из которых готов трудиться 5 часов в день. При этом один рабочий за час добывает 2 кг алюминия или 1 кг никеля.

Обе шахты поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 2 кг алюминия приходится 1 кг никеля. При этом шахты договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?


Аналоги к заданию № 513299: 513300 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко. 2016 г.

Задание 17 № 513687

Вася мечтает о собственной квартире, которая стоит 3 млн.руб. Вася может купить ее в кредит, при этом банк готов выдать эту сумму сразу, а погашать кредит Васе придется 20 лет равными ежемесячными платежами, при этом ему придется выплатить сумму, на 180% превышающую исходную. Вместо этого, Вася может какое-то время снимать квартиру (стоимость аренды ― 15 тыс. руб. в месяц), откладывая каждый месяц на покупку квартиры сумму, которая останется от его возможного платежа банку (по первой схеме) после уплаты арендной платы за съемную квартиру. За какое время в этом случае Вася сможет накопить на квартиру, если считать, что стоимость ее не изменится?


Аналоги к заданию № 513687: 513717 Все

Источник: Пробный эк­за­мен по про­филь­ной математике Санкт-Петербург 05.04.2016. Ва­ри­ант 1., А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 227.
Решение · ·

Задание 17 № 513717

Вася мечтает о собственной квартире, которая стоит 2 млн руб. Вася может купить ее в кредит, при этом банк готов выдать эту сумму сразу, а погашать кредит Васе придется 20 лет равными ежемесячными платежами, при этом ему придется выплатить сумму, на 260% превышающую исходную. Вместо этого, Вася может какое-то время снимать квартиру (стоимость аренды – 14 тыс. руб. в месяц), откладывая каждый месяц на покупку квартиры сумму, которая останется от его возможного платежа банку (по первой схеме) после уплаты арендной платы за съемную квартиру. За сколько месяцев в этом случае Вася сможет накопить на квартиру, если считать, что стоимость ее не изменится?


Аналоги к заданию № 513687: 513717 Все

Источник: Проб­ный эк­за­мен по про­филь­ной ма­те­ма­ти­ке Санкт-Петербург 05.04.2016. Ва­ри­ант 2.

Задание 17 № 515709

В двух областях есть по 50 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,2 кг алюминия или 0,1 кг никеля. Во второй области для добычи x кг алюминия в день требуется x2 человеко-часов труда, а для добычи y кг никеля в день требуется y2 человеко-часов труда.

Обе области поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором 1 кг алюминия приходится на 2 кг никеля. При этом области договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?


Аналоги к заданию № 513289: 513294 513297 513293 515709 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 4. (Часть C).

Задание 17 № 509824

Антон является владельцем двух заводов в разных городах. На заводах производится абсолютно одинаковые товары при использовании одинаковых технологий. Если рабочие на одном из заводов трудятся суммарно t2 часов в неделю, то за эту неделю они производят t единиц товара.

За каждый час работы на заводе, расположенном в первом городе, Антон платит рабочему 250 рублей, а на заводе, расположенном во втором городе, — 200 рублей.

Антон готов выделять 900 000 рублей в неделю на оплату труда рабочих. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах?


Аналоги к заданию № 509824: 517742 518117 517753 Все

Источник: ЕГЭ по математике — 2015. До­сроч­ная волна, ре­зерв­ный день (часть С).
Решение · ·

Задание 17 № 513302

На каждом из двух заводов работает по 100 человек. На первом заводе один рабочий изготавливает за смену 3 детали А или 1 деталь В. На втором заводе для изготовления t деталей (и А, и В) требуется t2 человеко-смен. Оба завода поставляют детали на комбинат, где собирают изделие, причем для его изготовления нужна 1 деталь А и 3 детали В. При этом заводы договариваются между собой изготавливать детали так, чтобы можно было собрать наибольшее количество изделий. Сколько изделий при таких условиях может собрать комбинат за смену?

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко. 2016 г.
Решение · ·

Задание 17 № 509095

Фабрика, производящая пищевые полуфабрикаты, выпускает блинчики со следующими видами начинки: ягодная и творожная. В данной ниже таблице приведены себестоимость и отпускная цена, а также производственные возможности фабрики по каждому виду продукта при полной загрузке всех мощностей только данным видом продукта.

 

Вид начинкиСебестоимость
(за 1 тонну)
Отпускная цена
(за 1 тонну)
Производственные
возможности
ягоды70 тыс. руб.100 тыс. руб.90 (тонн в мес.)
творог100 тыс. руб.135 тыс. руб.75 (тонн в мес.)

 

Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции каждого вида должно быть выпущено не менее 15 тонн. Предполагая, что вся продукция фабрики находит спрос (реализуется без остатка), найдите максимально возможную прибыль, которую может получить фабрика от производства блинчиков за 1 месяц.

Источник: Проб­ный эк­за­мен по ма­те­ма­ти­ке Кировского района Санкт-Петербурга, 2015. Ва­ри­ант 1.
Решение · ·

Задание 17 № 512339

Производство x тыс. единиц продукции обходится в q = 0,5x2 + x + 7 млн рублей в год. При цене p тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет px − q. При каком наименьшем значении p через три года суммарная прибыль составит не менее 75 млн рублей?


Аналоги к заданию № 512339: 512381 Все

Решение · ·

Задание 17 № 512381

Производство x тыс. единиц продукции обходится в q = 0,5x2 + 2x + 5 млн рублей в год. При цене p тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет px − q. При каком наименьшем значении p через четыре года суммарная прибыль составит не менее 52 млн рублей?


Аналоги к заданию № 512339: 512381 Все


Задание 17 № 508236

В 1-е классы поступает 45 человек: 20 мальчиков и 25 девочек. Их распределили по двум классам: в одном должно получиться 22 человека, а в другом ― 23. После распределения посчитали процент девочек в каждом классе и полученные числа сложили. Каким должно быть распределение по классам, чтобы полученная сумма была наибольшей?


Аналоги к заданию № 508236: 508257 Все

Источник: Пробный эк­за­мен Санкт-Петербург 2015. Вариант 1., Пробный эк­за­мен по математике Санкт-Петербург 2015. Ва­ри­ант 1.
Решение · ·

Задание 17 № 508257

В 1-е классы поступает 43 человека: 23 мальчика и 20 девочек. Их распределили по двум классам: в одном должно получиться 22 человека, а в другом ― 21. После распределения посчитали процент мальчиков в каждом классе и полученные числа сложили. Каким должно быть распределение по классам, чтобы полученная сумма была наибольшей?


Аналоги к заданию № 508236: 508257 Все

Источник: Проб­ный эк­за­мен Санкт-Петербург 2015. Ва­ри­ант 2., Пробный эк­за­мен по математике Санкт-Петербург 2015. Ва­ри­ант 2.

Задание 17 № 509124

Консервный завод выпускает фруктовые компоты в двух видах тары — стеклянной и жестяной. Производственные мощности завода позволяют выпускать в день 90 центнеров компотов в стеклянной таре или 80 центнеров в жестяной таре. Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции в каждом из видов тары должно быть выпущено не менее 20 центнеров. В таблице приведены себестоимость и отпускная цена завода за 1 центнер продукции для обоих видов тары.

 

Вид тарыСебестоимость,
1 центнера
Отпускная цена,
1 центнера
стеклянная1500 руб.2100 руб.
жестяная1100 руб.1750 руб.

 

Предполагая, что вся продукция завода находит спрос (реализуется без остатка), найдите максимально возможную прибыль завода за один день (прибылью называется разница между отпускной стоимостью всей продукции и её себестоимостью).

Источник: Проб­ный эк­за­мен по ма­те­ма­ти­ке Кировского района Санкт-Петербурга, 2015. Ва­ри­ант 2.

Задание 17 № 509184

Первичная информация разделяется по серверам №1 и №2 и обрабатывается на них. С сервера №1 при объёме t2 Гбайт входящей в него информации выходит 20t Гбайт, а с сервера №2 при объёме t2 Гбайт входящей в него информации выходит 21t Гбайт обработанной информации, 25 < t < 55. Каков наибольший общий объём выходящей информации при общем объёме входящей информации в 3364 Гбайт?

Источник: Материалы для экспертов ЕГЭ

Задание 17 № 509205

Григорий является владельцем двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары, но на заводе, расположенном во втором городе, используется более совершенное оборудование. В результате, если рабочие на заводе, расположенном в первом городе, трудятся суммарно t2 часов в неделю, то за эту неделю они производят 3t единиц товара; если рабочие на заводе, расположенном во втором городе, трудятся суммарно t2 часов в неделю, то за эту неделю они производят 4t единиц товара.

За каждый час работы (на каждом из заводов) Григорий платит рабочему 500 рублей.

Григорий готов выделять 5 000 000 рублей в неделю на оплату труда рабочих. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах?


Аналоги к заданию № 509205: 510075 Все

Источник: ЕГЭ по ма­те­ма­ти­ке — 2015. До­сроч­ная волна, Запад.
Решение · ·

Задание 17 № 511227

В распоряжении начальника имеется бригада рабочих в составе 24 человек. Их нужно распределить на день на два объекта. Если на первом объекте работает t человек, то их суточная зарплата составляет 4t2 у. е. Если на втором объекте работает t человек, то их суточная зарплата составляет t2 у. е. Как нужно распределить на эти объекты бригаду рабочих, чтобы выплаты на их суточную зарплату оказались наименьшими? Сколько у. е. в этом случае придется заплатить рабочим?

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 123.
Решение · ·

Задание 17 № 511234

Два велосипедиста равномерно движутся по взаимно перпендикулярным дорогам по направлению к перекрестку этих дорог. Один из них движется со скоростью 40 км/ч и находится на расстоянии 5 км от перекрестка, второй движется со скоростью 30 км/ч и находится на расстоянии 3 км от перекрестка. Через сколько минут расстояние между велосипедистами станет наименьшим? Каково будет это наименьшее расстояние? Считайте, что перекресток не T-образный, обе дороги продолжаются за перекрестком.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 124.
Решение · ·
Всего: 59    1–20 | 21–40 | 41–59