СДАМ ГИА






Вариант № 12511040

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3:55:00
1

Бегун про­бе­жал 180 мет­ров за 20 се­кунд. Най­ди­те сред­нюю ско­рость бе­гу­на. Ответ дайте в ки­ло­мет­рах в час.

За­да­ние 1 № 509874

Ответ:
2

На гра­фи­ке по­ка­зан про­цесс разо­гре­ва дви­га­те­ля лег­ко­во­го ав­то­мо­би­ля. На оси абс­цисс от­кла­ды­ва­ет­ся время в ми­ну­тах, про­шед­шее с мо­мен­та за­пус­ка дви­га­те­ля, на оси ор­ди­нат — тем­пе­ра­ту­ра дви­га­те­ля в гра­ду­сах Цель­сия. Опре­де­ли­те по гра­фи­ку, сколь­ко минут дви­га­тель на­гре­вал­ся от тем­пе­ра­ту­ры 40°C до тем­пе­ра­ту­ры 60°C.

За­да­ние 2 № 513702

Ответ:
3

Най­ди­те (в см2) пло­щадь S за­кра­шен­ной фи­гу­ры, изоб­ра­жен­ной на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки

1 см 1 см (см. рис.). В от­ве­те за­пи­ши­те .

 

За­да­ние 3 № 250929

Ответ:
4

В со­рев­но­ва­ни­ях по тол­ка­нию ядра участ­ву­ют 3 спортс­ме­на из Ма­ке­до­нии, 8 спортс­ме­нов из Сер­бии, 3 спортс­ме­на из Хор­ва­тии и 6 — из Сло­ве­нии. По­ря­док, в ко­то­ром вы­сту­па­ют спортс­ме­ны, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен, ко­то­рый вы­сту­па­ет по­след­ним, ока­жет­ся из Сер­бии.

За­да­ние 4 № 283727

Ответ:
5

Ре­ши­те урав­не­ние . Если урав­не­ние имеет более од­но­го корня, в от­ве­те за­пи­ши­те боль­ший из кор­ней.

За­да­ние 5 № 99759

Ответ:
6

Сто­ро­ны че­ты­рех­уголь­ни­ка , , и стя­ги­ва­ют дуги опи­сан­ной окруж­но­сти, гра­дус­ные ве­ли­чи­ны ко­то­рых равны со­от­вет­ствен­но , , , . Най­ди­те угол этого че­ты­рех­уголь­ни­ка. Ответ дайте в гра­ду­сах.

За­да­ние 6 № 27872

Ответ:
7

На ри­сун­ке изоб­ражён гра­фик функ­ции у = f'(x) — про­из­вод­ной функ­ции f(x) опре­делённой на ин­тер­ва­ле (1; 10). Най­ди­те точку ми­ни­му­ма функ­ции f(x).

За­да­ние 7 № 501188

Ответ:
8

Во сколь­ко раз уве­ли­чит­ся объем пи­ра­ми­ды, если ее вы­со­ту уве­ли­чить в трид­цать один раз?

За­да­ние 8 № 73999

Ответ:
9

Най­ди­те зна­че­ние вы­ра­же­ния , если .

За­да­ние 9 № 77415

Ответ:
10

В те­ле­ви­зо­ре ёмкость вы­со­ко­вольт­но­го кон­ден­са­то­ра  Ф. Па­рал­лель­но с кон­ден­са­то­ром под­ключeн ре­зи­стор с со­про­тив­ле­ни­ем  Ом. Во время ра­бо­ты те­ле­ви­зо­ра на­пря­же­ние на кон­ден­са­то­ре  кВ. После вы­клю­че­ния те­ле­ви­зо­ра на­пря­же­ние на кон­ден­са­то­ре убы­ва­ет до зна­че­ния U (кВ) за время, опре­де­ля­е­мое вы­ра­же­ни­ем (с), где  — по­сто­ян­ная. Опре­де­ли­те (в ки­ло­воль­тах), наи­боль­шее воз­мож­ное на­пря­же­ние на кон­ден­са­то­ре, если после вы­клю­че­ния те­ле­ви­зо­ра про­шло 62,4 с. Ответ дайте в ки­ло­воль­тах.

За­да­ние 10 № 42993

Ответ:
11

По морю па­рал­лель­ны­ми кур­са­ми в одном на­прав­ле­нии сле­ду­ют два су­хо­гру­за: пер­вый дли­ной 120 мет­ров, вто­рой — дли­ной 80 мет­ров. Сна­ча­ла вто­рой су­хо­груз от­ста­ет от пер­во­го, и в не­ко­то­рый мо­мент вре­ме­ни рас­сто­я­ние от кормы пер­во­го су­хо­гру­за до носа вто­ро­го со­став­ля­ет 400 мет­ров. Через 12 минут после этого уже пер­вый су­хо­груз от­ста­ет от вто­ро­го так, что рас­сто­я­ние от кормы вто­ро­го су­хо­гру­за до носа пер­во­го равно 600 мет­рам. На сколь­ко ки­ло­мет­ров в час ско­рость пер­во­го су­хо­гру­за мень­ше ско­ро­сти вто­ро­го?

За­да­ние 11 № 99610

Ответ:
12

Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке

За­да­ние 12 № 513682

Ответ:
13

а) Ре­ши­те урав­не­ние

б) Най­ди­те корни этого урав­не­ния, при­над­ле­жа­ще­го про­ме­жут­ку

За­да­ние 13 № 507595

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
14

В пра­виль­ной тре­уголь­ной пи­ра­ми­де MABC с ос­но­ва­ни­ем ABC сто­ро­ны ос­но­ва­ния равны 6, а бо­ко­вые рёбра 8. На ребре AC на­хо­дит­ся точка D, на ребре AB на­хо­дит­ся точка E, а на ребре AM — точка L. Из­вест­но, что СD = BE = LM = 2. Най­ди­те пло­щадь се­че­ния пи­ра­ми­ды плос­ко­стью, про­хо­дя­щей через точки E, D и L.

За­да­ние 14 № 505423

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
15

Ре­ши­те не­ра­вен­ство:

За­да­ние 15 № 511524

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
16

Вы­со­ты BB1 и CC1 ост­ро­уголь­но­го тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке H.

а) До­ка­жи­те, что ∠AHB1 = ∠ACB.

б) Най­ди­те BC, если AH = 21 и ∠BAC = 30°.

За­да­ние 16 № 505452

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
17

Алек­сей взял кре­дит в банке на срок 17 ме­ся­цев. По до­го­во­ру Алек­сей дол­жен вер­нуть кре­дит еже­ме­сяч­ны­ми пла­те­жа­ми. В конце каж­до­го ме­ся­ца к остав­шей­ся сумме долга до­бав­ля­ет­ся r % этой суммы и своим еже­ме­сяч­ным пла­те­жом Алек­сей по­га­ша­ет эти до­бав­лен­ные про­цен­ты и умень­ша­ет сумму долга. Еже­ме­сяч­ные пла­те­жи под­би­ра­ют­ся так, чтобы долг умень­шал­ся на одну и ту же ве­ли­чи­ну каж­дый месяц (на прак­ти­ке такая схема на­зы­ва­ет­ся «схе­мой с диф­фе­рен­ци­ро­ван­ны­ми пла­те­жа­ми»). Из­вест­но, что общая сумма, вы­пла­чен­ная Алек­се­ем банку за весь срок кре­ди­то­ва­ния, ока­за­лась на 27 % боль­ше, чем сумма, взя­тая им в кре­дит. Най­ди­те r.

За­да­ние 17 № 509004

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
18

Най­ди­те все зна­че­ние a, для каж­до­го из ко­то­рых урав­не­ние имеет хотя бы один ко­рень, при­над­ле­жа­щий про­ме­жут­ку [−1; 1).

За­да­ние 18 № 505039

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
19

На доске на­пи­са­но более 40, но менее 48 целых чисел. Сред­нее ариф­ме­ти­че­ское этих чисел равно −4, сред­нее ариф­ме­ти­че­ское всех по­ло­жи­тель­ных из них равно 5, а сред­нее ариф­ме­ти­че­ское всех от­ри­ца­тель­ных из них равно −5.

а) Сколь­ко чисел на­пи­са­но на доске?

б) Каких чисел на­пи­са­но боль­ше: по­ло­жи­тель­ных или от­ри­ца­тель­ных?

в) Какое наи­боль­шее ко­ли­че­ство по­ло­жи­тель­ных чисел может быть среди них?

За­да­ние 19 № 511413

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.




     О проекте

© Гущин Д. Д., 2011—2017


СПб ГУТ! С! Ф! У!
общее/сайт/предмет


Рейтинг@Mail.ru
Яндекс.Метрика