СДАМ ГИА






Вариант № 13137093

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3:55:00
1

В об­мен­ном пунк­те 1 грив­на стоит 3 рубля 90 ко­пе­ек. От­ды­ха­ю­щие об­ме­ня­ли рубли на грив­ны и ку­пи­ли арбуз весом 7 кг по цене 2 грив­ны за 1 кг. Во сколь­ко руб­лей обо­шлась им эта по­куп­ка? Ответ округ­ли­те до це­ло­го числа.

За­да­ние 1 № 78859

Ответ:
2

На ри­сун­ке по­ка­за­но из­ме­не­ние тем­пе­ра­ту­ры воз­ду­ха на про­тя­же­нии трёх суток. По го­ри­зон­та­ли ука­зы­ва­ет­ся дата и время, по вер­ти­ка­ли — зна­че­ние тем­пе­ра­ту­ры в гра­ду­сах Цель­сия. Опре­де­ли­те по ри­сун­ку раз­ность между наи­боль­шей и наи­мень­шей тем­пе­ра­ту­ра­ми воз­ду­ха 24 ян­ва­ря. Ответ дайте в гра­ду­сах Цель­сия.

 

 

За­да­ние 2 № 504837

Ответ:
3

Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты (8;0), (10;8), (2;10), (0;2).

За­да­ние 3 № 27569

Ответ:
4

В Вол­шеб­ной стра­не бы­ва­ет два типа по­го­ды: хо­ро­шая и от­лич­ная, причём по­го­да, уста­но­вив­шись утром, дер­жит­ся не­из­мен­ной весь день. Из­вест­но, что с ве­ро­ят­но­стью 0,8 по­го­да зав­тра будет такой же, как и се­год­ня. Се­год­ня 3 июля, по­го­да в Вол­шеб­ной стра­не хо­ро­шая. Най­ди­те ве­ро­ят­ность того, что 6 июля в Вол­шеб­ной стра­не будет от­лич­ная по­го­да.

За­да­ние 4 № 320206

Ответ:
5

Най­ди­те ко­рень урав­не­ния

За­да­ние 5 № 510118

Ответ:
6

Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в пра­виль­ный ше­сти­уголь­ник со сто­ро­ной

За­да­ние 6 № 53665

Ответ:
7

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 11). Най­ди­те ко­ли­че­ство точек экс­тре­му­ма функ­ции f(x) на от­рез­ке [−10; 10].

За­да­ние 7 № 27496

Ответ:
8

В ос­но­ва­нии пря­мой приз­мы лежит квад­рат со сто­ро­ной 2. Бо­ко­вые ребра равны . Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

За­да­ние 8 № 72303

Ответ:
9

Най­ди­те зна­че­ние вы­ра­же­ния

За­да­ние 9 № 514021

Ответ:
10

В ходе рас­па­да ра­дио­ак­тив­но­го изо­то­па его масса умень­ша­ет­ся по за­ко­ну , где – на­чаль­ная масса изо­то­па, – время, про­шед­шее от на­чаль­но­го мо­мен­та, – пе­ри­од по­лу­рас­па­да. В на­чаль­ный мо­мент вре­ме­ни масса изо­то­па 136 мг. Пе­ри­од его по­лу­рас­па­да со­став­ля­ет 10 мин. Най­ди­те, через сколь­ко минут масса изо­то­па будет равна 17 мг.

За­да­ние 10 № 42831

Ответ:
11

Два ве­ло­си­пе­ди­ста од­но­вре­мен­но от­пра­ви­лись в 240-ки­ло­мет­ро­вый про­бег. Пер­вый ехал со ско­ро­стью, на 8 км/ч боль­шей, чем ско­рость вто­ро­го, и при­был к фи­ни­шу на 8 часов рань­ше вто­ро­го. Найти ско­рость ве­ло­си­пе­ди­ста, при­шед­ше­го к фи­ни­шу пер­вым. Ответ дайте в км/ч.

За­да­ние 11 № 39305

Ответ:
12

Най­ди­те точку мак­си­му­ма функ­ции при­над­ле­жа­щую про­ме­жут­ку .

За­да­ние 12 № 132121

Ответ:
13

а) Ре­ши­те урав­не­ние .

 

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку .

За­да­ние 13 № 500637

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
14

Ра­ди­ус ос­но­ва­ния ко­ну­са с вер­ши­ной P равен 6, а длина его об­ра­зу­ю­щей равна 9. На окруж­но­сти ос­но­ва­ния ко­ну­са вы­бра­ны точки A и B, де­ля­щие окруж­ность на две дуги, длины ко­то­рых от­но­сят­ся как 1 : 3. Най­ди­те пло­щадь се­че­ния ко­ну­са плос­ко­стью ABP.

За­да­ние 14 № 505103

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
15

Ре­ши­те не­ра­вен­ство

За­да­ние 15 № 509044

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
16

В па­рал­ле­ло­грам­ме ABCD бис­сек­три­сы углов при сто­ро­не AD делят сто­ро­ну BC точ­ка­ми M и N так, что BM : MN = 1 : 2. Най­ди­те BC если AB = 12.

За­да­ние 16 № 484612

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
17

Жанна взяла в банке в кре­дит 1,2 млн руб­лей на срок 24 ме­ся­ца. По до­го­во­ру Жанна долж­на воз­вра­щать банку часть денег в конце каж­до­го ме­ся­ца. Каж­дый месяц общая сумма долга воз­рас­та­ет на 2 %, а затем умень­ша­ет­ся на сумму, упла­чен­ную Жан­ной банку в конце ме­ся­ца. Суммы, вы­пла­чи­ва­е­мые Жан­ной, под­би­ра­ют­ся так, чтобы сумма долга умень­ша­лась рав­но­мер­но, то есть на одну и ту же ве­ли­чи­ну каж­дый месяц. Какую сумму Жанна вернёт банку в те­че­ние пер­во­го года кре­ди­то­ва­ния?

За­да­ние 17 № 509583

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
18

Най­ди­те все зна­че­ния па­ра­мет­ра а, при каж­дом из ко­то­рых мно­же­ство зна­че­ний функ­ции со­дер­жит от­ре­зок

За­да­ние 18 № 507891

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
19

Най­ди­те все трой­ки на­ту­раль­ных чисел и удо­вле­тво­ря­ю­щие урав­не­нию где

За­да­ние 19 № 484667

Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.




     О проекте

© Гущин Д. Д., 2011—2017


СПб ГУТ! С! Ф! У!
общее/сайт/предмет


Рейтинг@Mail.ru
Яндекс.Метрика