математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Вариант № 17293158

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 503306

В квартире, где про­жи­ва­ет Дмитрий, уста­нов­лен при­бор учёта рас­хо­да хо­лод­ной воды (счётчик). 1 сен­тяб­ря счётчик по­ка­зы­вал рас­ход 167 куб. м. воды, а 1 ок­тяб­ря — 186 куб. м. Какую сумму дол­жен за­пла­тить Дмит­рий за хо­лод­ную воду за сентябрь, если цена 1 куб. м. хо­лод­ной воды со­став­ля­ет 17 руб. 30 коп.? Ответ дайте в рублях.


Ответ:

2
Задание 2 № 26872

На рисунке жирными точками показана цена нефти на момент закрытия биржевых торгов во все рабочие дни с 17 по 31 августа 2004 года. По горизонтали указываются числа месяца, по вертикали — цена барреля нефти в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку наименьшую цену нефти на момент закрытия торгов в указанный период (в долларах США за баррель).

 


Ответ:

3
Задание 3 № 5187

На клетчатой бумаге с клетками размером 1 см  1 см изображен треугольник (см. рисунок). Найдите его площадь в квадратных сантиметрах.


Ответ:

4
Задание 4 № 320471

Биатлонист 3 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последний раз промахнулся. Результат округлите до сотых.

 


Ответ:

5
Задание 5 № 77371

Найдите корень уравнения Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

 


Ответ:

6
Задание 6 № 27827

Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.


Ответ:

7
Задание 7 № 323375

На рисунке изображён график некоторой функции Функция  — одна из первообразных функции  Найдите площадь закрашенной фигуры.


Ответ:

8
Задание 8 № 277863

Найдите тангенс угла многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.


Ответ:

9
Задание 9 № 512331

Найдите зна­че­ние вы­ра­же­ния при b = 5.


Ответ:

10
Задание 10 № 510508

Некоторая компания продаёт свою продукцию по цене p = 400 руб. за единицу, переменные затраты на производство одной единицы продукции составляют v = 200 руб., постоянные расходы предприятия f = 600 000 руб. в месяц. Месячная операционная прибыль предприятия (в рублях) вычисляется по формуле g(q) = q(pv) − f. Определите месячный объём производства q (единиц продукции), при котором месячная операционная прибыль предприятия будет равна 900 000 руб.


Ответ:

11
Задание 11 № 323857

Два человека отправляются из одного дома на прогулку до опушки леса, находящейся в 1,1 км от дома. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча? Ответ дайте в километрах.


Ответ:

12
Задание 12 № 26697

Найдите наименьшее значение функции на отрезке


Ответ:

13
Задание 13 № 484549

Решите уравнение


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 512357

Все рёбра правильной треугольной пирамиды SBCD с вершиной S равны 9.

Основание O высоты SO этой пирамиды является серединой отрезка SS1, M — середина ребра SB , точка L лежит на ребре CD так, что CL : LD = 7 : 2.

а) Докажите, что сечение пирамиды SBCD плоскостью S1LM — равнобедренная трапеция.

б) Вычислите длину средней линии этой трапеции.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 508484

Решите неравенство:


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 504439

Точка M — середина стороны AD параллелограмма ABCD . Из вершины A проведены два луча, которые разбивают отрезок BM на три равные части.

а) Докажите, что один из лучей содержит диагональ параллелограмма.

б) Найдите площадь четырёхугольника, ограниченного двумя проведёнными лучами и прямыми BD и BC , если площадь параллелограмма ABCD равна 40.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 518112

Мистер Джонсон по случаю своего тридцатилетия открыл 1 октября 2010 года в банке счёт, на который он ежегодно кладет 6000 рублей. По условиям вклада банк ежегодно начисляет 30% на сумму, находящуюся на счёте. Через 7 лет 1 октября 2017 года октября, следуя примеру мистера Джонсона, мистер Браун по случаю своего тридцатилетия тоже открыл в банке счет, на который ежегодно кладёт по 13 800 рублей, а банк начисляет 69% в год. В каком году после очередного пополнения суммы вкладов мистера Джонсона и мистера Брауна сравняются, если деньги со счетов не снимают?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 513262

Найдите все значения a, при каждом из которых уравнение

не имеет корней.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 515711

Три различных натуральных числа являются длинами сторон некоторого тупоугольного треугольника.

а) Может ли отношение большего из этих чисел к меньшему из них быть равно

б) Может ли отношение большего из этих чисел к меньшему из них быть равно

в) Какое наименьшее значение может принимать отношение большего из этих чисел к меньшему из них, если известно, что среднее по величине число равно 18?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.