математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Вариант № 19724507

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 512323

В квар­ти­ре уста­нов­лен при­бор учёта рас­хо­да хо­лод­ной воды (счётчик). По­ка­за­ния счётчика 1 фев­ра­ля со­став­ля­ли 142 куб. м воды, а 1 марта — 156 куб. м. Сколь­ко нужно за­пла­тить за хо­лод­ную воду за февраль, если сто­и­мость 1 куб. м хо­лод­ной воды со­став­ля­ет 22 руб. 50 коп.? Ответ дайте в рублях.


Ответ:

2
Задание 2 № 513416

На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­но су­точ­ное ко­ли­че­ство осадков, вы­па­дав­ших в Ка­за­ни с 3 по 15 фев­ра­ля 1909 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся числа месяца, по вер­ти­ка­ли — ко­ли­че­ство осадков, вы­пав­ших в со­от­вет­ству­ю­щий день, в миллиметрах. Для на­гляд­но­сти жир­ные точки на ри­сун­ке со­еди­не­ны линией. Опре­де­ли­те по рисунку, сколь­ко дней из дан­но­го пе­ри­о­да вы­па­да­ло не менее 3 мил­ли­мет­ров осадков.


Ответ:

3
Задание 3 № 257769

Найдите пло­щадь четырехугольника, изоб­ра­жен­но­го на клет­ча­той бумаге с раз­ме­ром клетки 1 см 1 см (см. рис.). Ответ дайте в квад­рат­ных сантиметрах.


Ответ:

4
Задание 4 № 286341

В сборнике билетов по географии всего 50 билетов, в 10 из них встречается вопрос по теме "Регионам России". Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по теме "Регионам России".


Ответ:

5
Задание 5 № 509012

Найдите корень уравнения


Ответ:

6
Задание 6 № 46351

В треугольнике ABC AC = BC. Внешний угол при вершине B равен 163°. Найдите угол C. Ответ дайте в градусах.


Ответ:

7
Задание 7 № 505442

На ри­сун­ке изоб­ра­жен гра­фик функ­ции — про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 6). В какой точке от­рез­ка [−2; 4] функ­ция f(x) при­ни­ма­ет наи­мень­шее значение?

 


Ответ:

8
Задание 8 № 76799

Сторона основания правильной шестиугольной пирамиды равна 8, а угол между боковой гранью и основанием равен 45°. Найдите объем пирамиды.


Ответ:

9
Задание 9 № 66361

Найдите значение выражения


Ответ:

10
Задание 10 № 263861

Расстояние от наблюдателя, находящегося на небольшой высоте километров над землeй, до наблюдаемой им линии горизонта вычисляется по формуле , где (км) — радиус Земли. С какой высоты горизонт виден на расстоянии 28 километров? Ответ выразите в километрах.


Ответ:

11
Задание 11 № 324185

Два гонщика участвуют в гонках. Им предстоит проехать 46 кругов по кольцевой трассе протяжённостью 4 км. Оба гонщика стартовали одновременно, а на финиш первый пришёл раньше второго на 5 минут. Чему равнялась средняя скорость второго гонщика, если известно, что первый гонщик в первый раз обогнал второго на круг через 60 минут? Ответ дайте в км/ч.


Ответ:

12
Задание 12 № 129393

Найдите точку максимума функции


Ответ:

13
Задание 13 № 485987

а) Ре­ши­те уравнение

б) Ука­жи­те корни уравнения, при­над­ле­жа­щие отрезку


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 513266

Дана правильная шестиугольная пирамида SABCDEF с вершиной S.

а) Докажите, что плоскость, проходящая через середины рёбер SA и SD и вершину C, делит апофему грани ASB в отношении 2 : 1, считая от вершины S.

б) Найдите отношение, в котором плоскость, проходящая через середины рёбер SA и SD и вершину C, делит ребро SF, считая от вершины S.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 508476

Решите неравенство:


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 515828

Медианы AA1, BB1, и CC1 треугольника ABC пересекаются в точке M. Точки A2, B2 и C2 — середины отрезков MA, MB и MC соответственно.

а) Докажите, что площадь шестиугольника A1B2C1A2B1C2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 5, BC = 8 и AC = 10.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 513297

В двух областях есть по 100 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,3 кг алюминия или 0,1 кг никеля. Во второй области для добычи x кг алюминия в день требуется x2 человеко-часов труда, а для добычи у кг никеля в день требуется y2 человеко-часов труда.

Обе области поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 1 кг алюминия приходится 1 кг никеля. При этом области договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 511316

Найдите все зна­че­ния па­ра­мет­ра при каж­дом из ко­то­рых си­сте­ма имеет ровно решений.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 502058

Дано трёхзначное на­ту­раль­ное число (число не может на­чи­нать­ся с нуля), не крат­ное 100.

а) Может ли част­ное этого числа и суммы его цифр быть рав­ным 82?

б) Может ли част­ное этого числа и суммы его цифр быть рав­ным 83?

в) Какое наи­боль­шее на­ту­раль­ное зна­че­ние может иметь част­ное дан­но­го числа и суммы его цифр?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.