≡ математика
сайты - меню - вход - новости




Вариант № 20074948

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 24281

Налог на доходы составляет от заработной платы. После удержания налога на доходы Мария Константиновна получила 9570 рублей. Сколько рублей составляет заработная плата Марии Константиновны?


Ответ:

2
Задание 2 № 516244

На диаграмме показано количество выплавляемой меди в 10 странах мира в 2006 году. По горизонтали указываются страны, по вертикали – количество выплавляемой меди (в тысячах тонн). Среди представленных стран первое место по выплавке меди занимали США, десятое место — Казахстан. Какое место занимает Польша?


Ответ:

3
Задание 3 № 250915

На клетчатой бумаге с размером клетки изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 321035

 

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Сапфир» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Сапфир» выиграет жребий ровно два раза.

 


Ответ:

5
Задание 5 № 103513

Решите уравнение В ответе напишите наибольший отрицательный корень.


Ответ:

6
Задание 6 № 27775

Угол между биссектрисой и медианой прямоугольного треугольника, проведенными из вершины прямого угла, равен 14°. Найдите меньший угол этого треугольника. Ответ дайте в градусах.


Ответ:

7
Задание 7 № 509113

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−6; 5). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции па­рал­лель­на пря­мой y = −6.

 


Ответ:

8
Задание 8 № 27184

Объем куба равен 12. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.


Ответ:

9
Задание 9 № 66539

Найдите значение выражения


Ответ:

10
Задание 10 № 500958

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением км/ч 2 . Скорость вычисляется по формуле , где — пройденный автомобилем путь. Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 0,8 километра, приобрести скорость 100 км/ч. Ответ выразите в км/ч2 .


Ответ:

11
Задание 11 № 110551

Пете надо решить 333 задачи. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Петя решил 5 задач. Определите, сколько задач решил Петя в последний день, если со всеми задачами он справился за 9 дней.


Ответ:

12
Задание 12 № 127435

Найдите точку максимума функции


Ответ:

13
Задание 13 № 515724

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 511602

В правильной треугольной пирамиде SABC сторона основания AB равна 4, а боковое ребро SA равно 5. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.

б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 507691

Решите неравенство:


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 505419

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H.

а) Докажите, что ∠AHB1 = ∠ACB.

б) Найдите BC, если и ∠BAC = 60°.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 508581

В одной стране в обращении находилось 1 000 000 долларов, 20% из которых были фальшивыми. Некая криминальная структура стала ввозить в страну по 100 000 долларов в месяц, 10% из которых были фальшивыми. В это же время другая структура стала вывозить из страны 50 000 долларов ежемесячно, из которых 30% оказались фальшивыми. Через сколько месяцев содержание фальшивых долларов в стране составит 5% от общего количества долларов?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 514741

Найдите все значения a, при каждом из которых уравнение

имеет ровно два различных корня.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 517584

На доске написано 30 различных натуральных чисел, каждое из которых либо четное, либо его десятичная запись заканчивается на цифру 7. Сумма написанных чисел равна 810.

а) Может ли быть 24 четных числа?

б) Может ли быть на доске ровно два числа, оканчивающихся на 7?

в) Какое наименьшее количество чисел с последней цифрой 7 может быть на доске?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.