≡ математика
сайты - меню - вход - новости




Вариант № 20755058

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 520687

Теплоход рассчитан на 750 пассажиров и 25 членов команды. Каждая спасательная шлюпка может вместить 50 человек. Какое наименьшее число шлюпок должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команды?


Ответ:

2
Задание 2 № 263866

Мощность отопителя в автомобиле регулируется дополнительным сопротивлением, которое можно менять, поворачивая рукоятку в салоне машины. При этом меняется сила тока в электрической цепи электродвигателя — чем меньше сопротивление, тем больше сила тока и тем быстрее вращается мотор отопителя. На рисунке показана зависимость силы тока от величины сопротивления. На оси абсцисс откладывается сопротивление (в омах), на оси ординат — сила тока в амперах. Ток в цепи электродвигателя уменьшился с 8 до 6 ампер. На сколько Омов при этом увеличилось сопротивление цепи?


Ответ:

3
Задание 3 № 322727

На клет­ча­той бу­ма­ге изображены два круга. Пло­щадь внут­рен­не­го круга равна 2. Най­ди­те пло­щадь за­штри­хо­ван­ной фигуры.


Ответ:

4
Задание 4 № 321013

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Химик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Химик» выиграет жребий ровно два раза.

 


Ответ:

5
Задание 5 № 509012

Найдите корень уравнения


Ответ:

6
Задание 6 № 27767

В треугольнике ABC CH — высота, AD — биссектриса, O — точка пересечения CH и AD, угол BAD равен 26°. Найдите угол AOC. Ответ дайте в градусах.


Ответ:

7
Задание 7 № 122715

Материальная точка движется прямолинейно по закону (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость (в м/с) в момент времени t = 3 с.


Ответ:

8
Задание 8 № 27198

Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите


Ответ:

9
Задание 9 № 26840

Найдите , если


Ответ:

10
Задание 10 № 28010

Катер должен пересечь реку шириной м и со скоростью течения м/с так, чтобы причалить точно напротив места отправления. Он может двигаться с разными скоростями, при этом время в пути, измеряемое в секундах, определяется выражением , где – острый угол, задающий направление его движения (отсчитывается от берега). Под каким минимальным углом (в градусах) нужно плыть, чтобы время в пути было не больше 200 с?


Ответ:

11
Задание 11 № 5983

Баржа в 10:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 1 час 30 минут, баржа отправилась назад и вернулась в пункт А в 22:00 того же дня. Определите (в км/ч) собственную скорость баржи, если известно, что скорость течения реки 3 км/ч.


Ответ:

12
Задание 12 № 245179

Найдите наименьшее значение функции


Ответ:

13
Задание 13 № 511580

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащие отрезку


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 520659

На окружности основания конуса с вершиной S отмечены точки A, B и C так, что AB = BC. Медиана AM треугольника ACS пересекает высоту конуса.

а) Точка N — середина отрезка AC. Докажите, что угол MNB прямой.

б) Найдите угол между прямыми AM и SB, если AS = 2, .


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 511573

Решите неравенство:


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 511593

В прямоугольном треугольнике ABC с прямым углом C известны стороны AC = 15, BC = 8. Окружность радиуса 0,5 с центром O на стороне BC проходит через вершину C. Вторая окружность касается катета AC, гипотенузы треугольника, а также внешним образом касается первой окружности.

а) Докажите, что радиус второй окружности меньше, чем длины катета

б) Найдите радиус второй окружности.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 513301

В двух областях есть по 160 рабочих, каждый из которых готов трудиться по 5 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,1 кг алюминия или 0,1 кг никеля. Во второй области для добычи x кг алюминия в день требуется x2 человеко-часов труда, а для добычи у кг никеля в день требуется у2 человеко-часов труда.

Для нужд промышленности можно использовать или алюминий, или никель, причём 1 кг алюминия можно заменить 1 кг никеля. Какую наибольшую массу металлов можно за сутки суммарно добыть в двух областях?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 508258

Найдите все такие значения параметра a, при каждом из которых уравнение не имеет решений.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 517458

На доске написано 30 различных натуральных чисел, десятичная запись каждого из которых оканчивается или на цифру 4, или на цифру 8. Сумма написанных чисел равна 2786.

а) Может ли на доске быть поровну чисел, оканчивающихся на 4 или на 8?

б) Могут ли ровно четыре числа на доске оканчиваться на 8?

в) Какое наименьшее количество чисел, оканчивающихся на 8, может быть на доске?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.