СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости




Вариант № 22713205

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 501737

В квартире, где про­жи­ва­ет Екатерина, уста­нов­лен при­бор учёта рас­хо­да хо­лод­ной воды (счётчик). Пер­во­го сен­тяб­ря счётчик по­ка­зы­вал рас­ход 189 куб.м воды, а 1 октября — 204 куб. м. Какую сумму долж­на за­пла­тить Ека­те­ри­на за хо­лод­ную воду за сентябрь, если цена 1 куб. м хо­лод­ной воды со­став­ля­ет 16 руб. 90 коп.? Ответ дайте в рублях.


Ответ:

2
Задание 2 № 263867

Когда са­мо­лет на­хо­дит­ся в го­ри­зон­таль­ном полете, подъ­ем­ная сила, дей­ству­ю­щая на крылья, за­ви­сит толь­ко от скорости. На ри­сун­ке изоб­ра­же­на эта за­ви­си­мость для не­ко­то­ро­го самолета. На оси абс­цисс от­кла­ды­ва­ет­ся ско­рость (в ки­ло­мет­рах в час), на оси ор­ди­нат – сила (в тон­нах силы). Опре­де­ли­те по рисунку, чему равна подъ­ем­ная сила (в тон­нах силы) при ско­ро­сти 200 км/ч?


Ответ:

3
Задание 3 № 254851

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 321301

На борту самолёта 12 мест рядом с за­пас­ны­ми вы­хо­да­ми и 21 мест за пе­ре­го­род­ка­ми, раз­де­ля­ю­щи­ми са­ло­ны. Осталь­ные места не­удоб­ны для пас­са­жи­ра вы­со­ко­го роста. Пас­са­жир В. вы­со­ко­го роста. Най­ди­те ве­ро­ят­ность того, что на ре­ги­стра­ции при слу­чай­ном вы­бо­ре места пас­са­жи­ру В. до­ста­нет­ся удоб­ное место, если всего в самолёте 100 мест.

 

 


Ответ:

5
Задание 5 № 77378

Решите уравнение


Ответ:

6
Задание 6 № 27827

Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.


Ответ:

7
Задание 7 № 317544

На рисунке изображен график функции и отмечены точки −2, −1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.


Ответ:

8
Задание 8 № 5077

Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.


Ответ:

9
Задание 9 № 26784

Найдите , если и


Ответ:

10
Задание 10 № 513891

Груз массой 0,4 кг колеблется на пружине. Его скорость v меняется по закону где t — время с момента начала колебаний, T = 8 с — период колебаний, м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле где m — масса груза в килограммах, v — скорость груза в м/с. Найдите кинетическую энергию груза через 3 секунды после начала колебаний. Ответ дайте в джоулях.


Ответ:

11
Задание 11 № 99570

Митя, Антон, Гоша и Борис учредили компанию с уставным капиталом 200000 рублей. Митя внес 14% уставного капитала, Антон — 42000 рублей, Гоша — 0,12 уставного капитала, а оставшуюся часть капитала внес Борис. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1000000 рублей причитается Борису? Ответ дайте в рублях.


Ответ:

12
Задание 12 № 77498

Найдите наибольшее значение функции на отрезке


Ответ:

13
Задание 13 № 516380

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 512357

Все рёбра правильной треугольной пирамиды SBCD с вершиной S равны 9.

Основание O высоты SO этой пирамиды является серединой отрезка SS1, M — середина ребра SB , точка L лежит на ребре CD так, что CL : LD = 7 : 2.

а) Докажите, что сечение пирамиды SBCD плоскостью S1LM — равнобедренная трапеция.

б) Вычислите длину средней линии этой трапеции.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 514644

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 517529

Дана трапеция ABCD с основаниями AD и ВС, причем и точка M внутри трапеции, такая, что

а) Докажите, что АM = DM.

б) Найдите угол BAD, если угол CDA равен 50°, а высота, проведённая из точки M к АD, равна BC.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 508585

В банк был положен вклад под банковский процент 10% годовых. Через год, после начисления процентов, хозяин вклада снял со счета 2000 рублей, а еще через год снова внес 2000 рублей. Однако, вследствие этих действий через три года со времени первоначального вложения вклада он получил сумму меньше запланированной (если бы не было промежуточных операций со вкладом). На сколько рублей меньше запланированной суммы получил в итоге вкладчик?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 510132

Найдите все значения при каждом из которых система

имеет единственное решение.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 510077

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 2970. В каждом числе поменяли местами первую и вторую цифры (например, число 16 заменили на число 61).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 3 раза меньше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 5 раз меньше, чем сумма исходных чисел?

в) Найдите наименьшее возможное значение суммы получившихся чисел.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.