№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Классификатор базовой части Классификатор планиметрии Классификатор стереометрии Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 24743923

1.

Футболка стоила 800 рублей. После снижения цены она стала стоить 680 рублей. На сколько процентов была снижена цена на футболку?

2.

Когда самолет находится в горизонтальном полете, подъемная сила, действующая на крылья, зависит только от скорости. На рисунке изображена эта зависимость для некоторого самолета. На оси абсцисс откладывается скорость (в километрах в час), на оси ординат — сила (в тоннах силы). Определите по рисунку, чему равна подъемная сила (в тоннах силы) при скорости 200 км/ч?

3.

Найдите площадь четырехугольника, вершины которого имеют координаты (8;0), (10;8), (2;10), (0;2).

4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос по теме «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

5.

Найдите корень уравнения

6.

Пусть тупым яв­ля­ет­ся угол C, тогда сто­ро­на AB ту­по­уголь­но­го тре­уголь­ни­ка ABC равна ра­ди­у­су опи­сан­ной около него окруж­но­сти. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

7.

Материальная точка движется прямолинейно по закону (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 3 м/с?

 

8.

Найдите объём правильной шестиугольной пирамиды SABCDEF, если объём треугольной пирамиды SABC равен 33.

9.

Найдите , если

10.

Коэффициент полезного действия (КПД) некоторого двигателя определяется формулой , где – температура нагревателя (в градусах Кельвина), – температура холодильника (в градусах Кельвина). При какой минимальной температуре нагревателя КПД этого двигателя будет не меньше , если температура холодильника К? Ответ выразите в градусах Кельвина.

11.

По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 600 метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно 1 минуте. Ответ дайте в метрах.

12.

Найдите наибольшее значение функции на отрезке

13.

а) Ре­ши­те урав­не­ние:

б) Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку

14.

В правильной четырёхугольной пирамиде SABCD сторона основания AB равна боковому ребру SA. Медианы треугольника SBC пересекаются в точке M.

а) Докажите, что

б) Точка N — середина AM. Найдите SN, если .

15.

Ре­ши­те не­ра­вен­ство:

16.

Точка О — центр окружности, вписанной в треугольник ABC. На продолжении отрезка AO за точку О отмечена точка K так, что BK = OK.

а) Докажите, что четырехугольник ABKC вписанный.

б) Найдите длину отрезка AO, если известно, что радиусы вписанной и описанной окружностей треугольника ABC равны 3 и 12 соответственно, а OK = 5.

17.

В двух шахтах добывают алюминий и никель. В первой шахте имеется 20 рабочих, каждый из которых готов трудиться 5 часов в день. При этом один рабочий за час добывает 1 кг алюминия или 2 кг никеля. Во второй шахте имеется 100 рабочих, каждый из которых готов трудиться 5 часов в день. При этом один рабочий за час добывает 2 кг алюминия или 1 кг никеля.

Обе шахты поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 2 кг алюминия приходится 1 кг никеля. При этом шахты договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?

18.

Найдите все значения а, при каждом из которых уравнение

имеет единственный корень.

19.

Склад представляет собой прямоугольный параллелепипед с целыми сторонами, контейнеры — прямоугольные параллелепипеды с размерами 1×1×3 м. Контейнеры на складе можно класть как угодно, но параллельно границам склада.

а) Может ли оказаться, что полностью заполнить склад размером 120 кубометров нельзя?

б) Может ли оказаться, что на склад объемом 100 кубометров не удастся поместить 33 контейнера?

в) Пусть объем склада равен 800 кубометров. Какой процент объема такого склада удастся гарантировано заполнить контейнерами при любой конфигурации склада?