СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости



Вариант № 24832096

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 314968

Одна таблетка лекарства весит 20 мг и содержит 5% активного вещества. Ребёнку в возрасте до 6 месяцев врач прописывает 1,4 мг активного вещества на каждый килограмм веса в сутки. Сколько таблеток этого лекарства следует дать ребёнку в возрасте четырёх месяцев и весом 5 кг в течение суток?


Ответ:

2
Задание 2 № 512495

На ри­сун­ке по­ка­зан гра­фик дви­же­ния ав­то­мо­би­ля по марш­ру­ту. На оси абс­цисс от­кла­ды­ва­ет­ся время (в часах), на оси ор­ди­нат — прой­ден­ный путь (в ки­ло­мет­рах). Най­ди­те сред­нюю ско­рость дви­же­ния ав­то­мо­би­ля на дан­ном марш­ру­те. Ответ дайте в км/ч.


Ответ:

3
Задание 3 № 27451

Найдите синус угла В ответе укажите значение синуса, умноженное на


Ответ:

4
Задание 4 № 320200

На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до сотых.


Ответ:

5
Задание 5 № 77382

Решите уравнение Если уравнение имеет более одного корня, в ответе укажите меньший из них.


Ответ:

6
Задание 6 № 27238

В треугольнике угол равен 90°, , Найдите


Ответ:

7
Задание 7 № 119973

Прямая является касательной к графику функции Найдите , учитывая, что абсцисса точки касания больше 0.


Ответ:

8
Задание 8 № 245355

Куб впи­сан в шар ра­ди­у­са Най­ди­те объем куба.


Ответ:

9
Задание 9 № 26803

Най­ди­те , если при


Ответ:

10
Задание 10 № 27970

Для по­лу­че­ния на экра­не уве­ли­чен­но­го изоб­ра­же­ния лам­поч­ки в ла­бо­ра­то­рии ис­поль­зу­ет­ся со­би­ра­ю­щая линза с глав­ным фо­кус­ным рас­сто­я­ни­ем см. Рас­сто­я­ние от линзы до лам­поч­ки может из­ме­нять­ся в пре­де­лах от 30 до 50 см, а рас­сто­я­ние от линзы до экра­на – в пре­де­лах от 150 до 180 см. Изоб­ра­же­ние на экра­не будет чет­ким, если вы­пол­не­но со­от­но­ше­ние Ука­жи­те, на каком наи­мень­шем рас­сто­я­нии от линзы можно по­ме­стить лам­поч­ку, чтобы еe изоб­ра­же­ние на экра­не было чeтким. Ответ вы­ра­зи­те в сан­ти­мет­рах.


Ответ:

11
Задание 11 № 99599

Из пунк­та A кру­го­вой трас­сы вы­ехал ве­ло­си­пе­дист. Через 30 минут он еще не вер­нул­ся в пункт А и из пунк­та А сле­дом за ним от­пра­вил­ся мо­то­цик­лист. Через 10 минут после от­прав­ле­ния он до­гнал ве­ло­си­пе­ди­ста в пер­вый раз, а еще через 30 минут после этого до­гнал его во вто­рой раз. Най­ди­те ско­рость мо­то­цик­ли­ста, если длина трас­сы равна 30 км. Ответ дайте в км/ч.


Ответ:

12
Задание 12 № 245183

Найдите наименьшее значение функции


Ответ:

13
Задание 13 № 502999

а) Ре­ши­те урав­не­ние

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [−1; 2].


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 519515

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де PABCD сто­ро­на ос­но­ва­ния ABCD равна 12, бо­ко­вое ребро PA . Через вер­ши­ну A про­ве­де­на плос­кость , пер­пен­ди­ку­ляр­ная пря­мой PC и пе­ре­се­ка­ю­щая ребро PC в точке K.

а) До­ка­жи­те, что плос­кость делит вы­со­ту PH пи­ра­ми­ды PABCD в от­но­ше­нии , счи­тая от вер­ши­ны .

б) Най­ди­те рас­сто­я­ние между пря­мы­ми PH и BK.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 484579

Ре­ши­те не­ра­вен­ство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 507262

Диа­го­наль AC пря­мо­уголь­ни­ка ABCD с цен­тром O об­ра­зу­ет со сто­ро­ной AB угол 30°. Точка E лежит вне пря­мо­уголь­ни­ка, причём ∠BEC = 120°.

а) До­ка­жи­те, что ∠CBE = ∠COE.

б) Пря­мая OE пе­ре­се­ка­ет сто­ро­ну AD пря­мо­уголь­ни­ка в точке K. Най­ди­те EK, если из­вест­но, что BE = 40 и CE = 24.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 513302

На каж­дом из двух за­во­дов ра­бо­та­ет по 100 че­ло­век. На пер­вом за­во­де один ра­бо­чий из­го­тав­ли­ва­ет за смену 3 де­та­ли А или 1 де­таль В. На вто­ром за­во­де для из­го­тов­ле­ния t де­та­лей (и А, и В) тре­бу­ет­ся t2 че­ло­ве­ко-смен. Оба за­во­да по­став­ля­ют де­та­ли на ком­би­нат, где со­би­ра­ют из­де­лие, при­чем для его из­го­тов­ле­ния нужна 1 де­таль А и 3 де­та­ли В. При этом за­во­ды до­го­ва­ри­ва­ют­ся между собой из­го­тав­ли­вать де­та­ли так, чтобы можно было со­брать наи­боль­шее ко­ли­че­ство из­де­лий. Сколь­ко из­де­лий при таких усло­ви­ях может со­брать ком­би­нат за смену?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 519663

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний

 

 

имеет ровно два раз­лич­ных ре­ше­ния?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 517567

Маша и Наташа делают фотографии. Каждый день каждая девочка делает на одну фотографию больше, чем в предыдущий день. В конце Наташа сделала на 1001 фотографию больше, чем Маша.

а) Могло ли это произойти за 7 дней?

б) Могло ли это произойти за 8 дней?

в) Какое максимальное количество фотографий могла сделать Наташа, если Маша в последний день сделала меньше 40 фотографий?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.