СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости



Вариант № 24832104

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 323512

По тарифному плану «Просто как день» компания сотовой связи каждый вечер снимает со счёта абонента 16 рублей. Если на счету осталось меньше 16 рублей, то на следующее утро номер блокируют до пополнения счёта. Сегодня утром у Лизы на счету было 700 рублей. Сколько дней (включая сегодняшний) она сможет пользоваться телефоном, не пополняя счёт?


Ответ:

2
Задание 2 № 26870

На ри­сун­ке по­ка­за­но из­ме­не­ние тем­пе­ра­ту­ры воз­ду­ха на про­тя­же­нии трех суток. По го­ри­зон­та­ли ука­зы­ва­ет­ся дата и время суток, по вер­ти­ка­ли — зна­че­ние тем­пе­ра­ту­ры в гра­ду­сах Цель­сия. Опре­де­ли­те по ри­сун­ку раз­ность между наи­боль­шей и наи­мень­шей тем­пе­ра­ту­рой воз­ду­ха 15 июля. Ответ дайте в гра­ду­сах Цель­сия.


Ответ:

3
Задание 3 № 315124

На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 9. Найдите площадь заштрихованной фигуры.


Ответ:

4
Задание 4 № 320207

Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.


Ответ:

5
Задание 5 № 26646

Найдите корень уравнения


Ответ:

6
Задание 6 № 27923

Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.


Ответ:

7
Задание 7 № 317544

На ри­сун­ке изоб­ра­жен гра­фик функ­ции и от­ме­че­ны точки −2, −1, 1, 4. В какой из этих точек зна­че­ние про­из­вод­ной наи­мень­шее? В от­ве­те ука­жи­те эту точку.


Ответ:

8
Задание 8 № 27048

В сосуд, име­ю­щий форму пра­виль­ной тре­уголь­ной приз­мы, на­ли­ли воду. Уро­вень воды до­сти­га­ет 80 см. На какой вы­со­те будет на­хо­дить­ся уро­вень воды, если ее пе­ре­лить в дру­гой такой же сосуд, у ко­то­ро­го сто­ро­на ос­но­ва­ния в 4 раза боль­ше, чем у пер­во­го? Ответ вы­ра­зи­те в см.


Ответ:

9
Задание 9 № 26784

Найдите , если и


Ответ:

10
Задание 10 № 27986

Расстояние (в км) от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле , где  км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. К пляжу ведeт лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?


Ответ:

11
Задание 11 № 99587

Ком­па­ния "Альфа" на­ча­ла ин­ве­сти­ро­вать сред­ства в пер­спек­тив­ную от­расль в 2001 году, имея ка­пи­тал в раз­ме­ре 5000 дол­ла­ров. Каж­дый год, на­чи­ная с 2002 года, она по­лу­ча­ла при­быль, ко­то­рая со­став­ля­ла 200% от ка­пи­та­ла преды­ду­ще­го года. А ком­па­ния «Бета» на­ча­ла ин­ве­сти­ро­вать сред­ства в дру­гую от­расль в 2003 году, имея ка­пи­тал в раз­ме­ре 10000 дол­ла­ров, и, на­чи­ная с 2004 года, еже­год­но по­лу­ча­ла при­быль, со­став­ля­ю­щую 400% от ка­пи­та­ла преды­ду­ще­го года. На сколь­ко дол­ла­ров ка­пи­тал одной из ком­па­ний был боль­ше ка­пи­та­ла дру­гой к концу 2006 года, если при­быль из обо­ро­та не изы­ма­лась?


Ответ:

12
Задание 12 № 245177

Найдите точку максимума функции


Ответ:

13
Задание 13 № 519658

а) Решите уравнение .

б) Укажите все корни этого уравнения, принадлежащие промежутку .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 505566

В конус, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен 3, впи­сан шар ра­ди­у­са 1,5.

а) Изоб­ра­зи­те осе­вое се­че­ние ком­би­на­ции этих тел.

б) Най­ди­те от­но­ше­ние пло­ща­ди пол­ной по­верх­но­сти ко­ну­са к пло­ща­ди по­верх­но­сти шара.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 515669

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 515689

Точки B1 и C1 лежат на сто­ро­нах со­от­вет­ствен­но AC и AB тре­уголь­ни­ка ABC, причём AB1 : B1C = AC1 : C1B. Пря­мые BB1 и CC1 пе­ре­се­ка­ют­ся в точке O.

а) До­ка­жи­те, что пря­мая AO делит по­по­лам сто­ро­ну BC.

б) Най­ди­те от­но­ше­ние пло­ща­ди четырёхуголь­ни­ка AB1OC1 к пло­ща­ди тре­уголь­ни­ка ABC, если из­вест­но, что AB1 : B1C = AC1 : C1B = 1 : 4.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 516053

Пенсионный фонд владеет акциями, цена которых к концу года t становится равной t2 тыс. руб. (т. е. к концу первого года они стоят 1 тыс. руб., к концу второго — 4 тыс. руб. и т. д.), в течение 20 лет. В конце любого года можно продать акции по их рыночной цене на конец года и положить вырученные деньги в банк под 25% годовых. В конце какого года нужно продать акции, чтобы прибыль была максимальной?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 484633

При каких значениях параметров а и b система имеет бесконечно много решений?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 517572

На доске написано 30 натуральных чисел. Какие-то из них красные, а какие-то зелёные. Красные числа кратны 7, а зелёные числа кратны 5. Все красные числа отличаются друг от друга, как и все зелёные. Но между красными и зелёными могут быть одинаковые.

а) Может ли сумма всех чисел, записанных на доске, быть меньше 2325, если на доске написаны только кратные 5 числа?

б) Может ли сумма чисел быть 1467, если только одно число красное?

в) Найдите наименьшее количество красных чисел, которое может быть при сумме 1467.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.