СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 24890475

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 514738

За­да­чу №1 пра­виль­но ре­ши­ли 13230 че­ло­век, что со­став­ля­ет 42% от вы­пуск­ни­ков го­ро­да. Сколь­ко всего вы­пуск­ни­ков в этом го­ро­де?


Ответ:

2
Задание 2 № 502061

На ри­сун­ке по­ка­за­но из­ме­не­ние тем­пе­ра­ту­ры воз­ду­ха на про­тя­же­нии трёх суток. По го­ри­зон­та­ли ука­зы­ва­ет­ся дата и время, по вер­ти­ка­ли — зна­че­ние тем­пе­ра­ту­ры в гра­ду­сах Цельсия. Опре­де­ли­те по ри­сун­ку раз­ность между наи­боль­шей и наи­мень­шей тем­пе­ра­ту­ра­ми воз­ду­ха 23 января. Ответ дайте в гра­ду­сах Цельсия.

 


Ответ:

3
Задание 3 № 244983

Най­ди­те пло­щадь ромба, изоб­ра­жен­но­го на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см 1 см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.


Ответ:

4
Задание 4 № 282858

В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 — из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции.


Ответ:

5
Задание 5 № 27465

Найдите корень уравнения


Ответ:

6
Задание 6 № 27779

В треугольнике ABC угол A равен 60°, угол B равен 82°. AD, BE и CF — высоты, пересекающиеся в точке O. Найдите угол AOF. Ответ дайте в градусах.


Ответ:

7
Задание 7 № 40129

На рисунке изображен график функции y=f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 8. Найдите f '(8).


Ответ:

8
Задание 8 № 27160

Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в два раза боль­ше пло­ща­ди ос­но­ва­ния. Най­ди­те угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью ос­но­ва­ния. Ответ дайте в гра­ду­сах.


Ответ:

9
Задание 9 № 26805

Най­ди­те , если


Ответ:

10
Задание 10 № 27999

Де­та­лью не­ко­то­ро­го при­бо­ра яв­ля­ет­ся квад­рат­ная рамка с на­мо­тан­ным на неe про­во­дом, через ко­то­рый про­пу­щен по­сто­ян­ный ток. Рамка по­ме­ще­на в од­но­род­ное маг­нит­ное поле так, что она может вра­щать­ся. Мо­мент силы Ам­пе­ра, стре­мя­щей­ся по­вер­нуть рамку, (в Нм) опре­де­ля­ет­ся фор­му­лой , где – сила тока в рамке, Тл – зна­че­ние ин­дук­ции маг­нит­но­го поля, м – раз­мер рамки, – число вит­ков про­во­да в рамке, – ост­рый угол между пер­пен­ди­ку­ля­ром к рамке и век­то­ром ин­дук­ции. При каком наи­мень­шем зна­че­нии угла (в гра­ду­сах) рамка может на­чать вра­щать­ся, если для этого нужно, чтобы рас­кру­чи­ва­ю­щий мо­мент M был не мень­ше 0,75 Нм?


Ответ:

11
Задание 11 № 26579

Из пунк­та A в пункт B од­но­вре­мен­но вы­еха­ли два ав­то­мо­би­ля. Пер­вый про­ехал с по­сто­ян­ной ско­ро­стью весь путь. Вто­рой про­ехал первую по­ло­ви­ну пути со ско­ро­стью, мень­шей ско­ро­сти пер­во­го на 13 км/ч, а вто­рую по­ло­ви­ну пути – со ско­ро­стью 78 км/ч, в ре­зуль­та­те чего при­был в пункт В од­но­вре­мен­но с пер­вым ав­то­мо­би­лем. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ля, если из­вест­но, что она боль­ше 48 км/ч. Ответ дайте в км/ч.


Ответ:

12
Задание 12 № 26700

Найдите наибольшее значение функции на отрезке


Ответ:

13
Задание 13 № 514241

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащего отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 520974

На ребре AB пра­виль­ной четырёхуголь­ной пи­ра­ми­ды SABCD с ос­но­ва­ни­ем ABCD от­ме­че­на точка Q, причём AQ : QB = 1 : 2. Точка P — се­ре­ди­на ребра AS.

а) До­ка­жи­те, что плос­кость DPQ пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния пи­ра­ми­ды.

б) Най­ди­те пло­щадь се­че­ния DPQ, если пло­щадь се­че­ния DSB равна 6.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 484585

Ре­ши­те не­ра­вен­ство:


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 514633

На про­дол­же­нии сто­ро­ны АС за вер­ши­ну А тре­уголь­ни­ка АВС от­ме­че­на точка D так, что AD = AB. Пря­мая, про­хо­дя­щая через точку А, па­рал­лель­но BD, пе­ре­се­ка­ет сто­ро­ну ВС в точке M.

а) До­ка­жи­те, что AM — бис­сек­три­са тре­уголь­ни­ка АВС.

б) Найти SAMBD, если AC = 30, BC = 18 и AB = 24.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 513350

По вкладу «А» банк в конце каждого года планирует увеличивать на 10% сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 5% в первый год и на одинаковое целое число n процентов и за второй, и за третий годы. Найдите наименьшее значение n, при котором за три года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 484646

Най­ди­те все зна­че­ния па­ра­мет­ра при каж­дом из ко­то­рых си­сте­ма

имеет ровно ре­ше­ний.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 502119

Даны n раз­лич­ных на­ту­раль­ных чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию

 

а) Может ли сумма всех дан­ных чисел быть рав­ной 10?

б) Ка­ко­во наи­боль­шее зна­че­ние n, если сумма всех дан­ных чисел мень­ше 1000?

в) Най­ди­те все воз­мож­ные зна­че­ния n, если сумма всех дан­ных чисел равна 129.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.