СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 25548592

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 77349

В сентябре 1 кг винограда стоил 60 рублей, в октябре виноград подорожал на 25%, а в ноябре еще на 20%. Сколько рублей стоил 1 кг винограда после подорожания в ноябре?


Ответ:

2
Задание 2 № 505113

На диаграмме показан средний балл участников 10 стран в тестировании учащихся 4-го класса по математике в 2007 году (по 1000-балльной шкале). Найдите число стран, в которых средний балл ниже, чем 515.


Ответ:

3
Задание 3 № 27569

Найдите площадь четырехугольника, вершины которого имеют координаты (8;0), (10;8), (2;10), (0;2).


Ответ:

4
Задание 4 № 320173

Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.


Ответ:

5
Задание 5 № 504427

Найдите корень уравнения


Ответ:

6
Задание 6 № 27922

Пусть тупым является угол C, тогда сторона AB тупоугольного треугольника ABC равна радиусу описанной около него окружности. Найдите угол C. Ответ дайте в градусах.


Ответ:

7
Задание 7 № 119978

Ма­те­ри­аль­ная точка дви­жет­ся пря­мо­ли­ней­но по за­ко­ну (где x — рас­сто­я­ние от точки от­сче­та в мет­рах, t — время в се­кун­дах, из­ме­рен­ное с на­ча­ла дви­же­ния). В какой мо­мент вре­ме­ни (в се­кун­дах) ее ско­рость была равна 3 м/с?

 


Ответ:

8
Задание 8 № 27052

Объем конуса равен 16. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.


Ответ:

9
Задание 9 № 26806

Найдите , если


Ответ:

10
Задание 10 № 27976

Коэффициент полезного действия (КПД) некоторого двигателя определяется формулой , где – температура нагревателя (в градусах Кельвина), – температура холодильника (в градусах Кельвина). При какой минимальной температуре нагревателя КПД этого двигателя будет не меньше , если температура холодильника К? Ответ выразите в градусах Кельвина.


Ответ:

11
Задание 11 № 99611

По двум па­рал­лель­ным же­лез­но­до­рож­ным путям в одном на­прав­ле­нии сле­ду­ют пас­са­жир­ский и то­вар­ный по­ез­да, ско­ро­сти ко­то­рых равны со­от­вет­ствен­но 90 км/ч и 30 км/ч. Длина то­вар­но­го по­ез­да равна 600 мет­рам. Най­ди­те длину пас­са­жир­ско­го по­ез­да, если время, за ко­то­рое он про­шел мимо то­вар­но­го по­ез­да, равно 1 ми­ну­те. Ответ дайте в мет­рах.


Ответ:

12
Задание 12 № 245181

Найдите точку максимума функции


Ответ:

13
Задание 13 № 513605

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 510019

Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N— середины рёбер AA1 и A1C1 соответственно.

а) Докажите, что прямые BM и MN перпендикулярны.

б) Найдите угол между плоскостями BMN и ABB1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 508452

Решите неравенство:


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 509094

Точка О — центр окружности, вписанной в треугольник ABC. На продолжении отрезка AO за точку О отмечена точка K так, что BK = OK.

а) Докажите, что четырехугольник ABKC вписанный.

б) Найдите длину отрезка AO, если известно, что радиусы вписанной и описанной окружностей треугольника ABC равны 3 и 12 соответственно, а OK = 5.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 513299

В двух шахтах добывают алюминий и никель. В первой шахте имеется 20 рабочих, каждый из которых готов трудиться 5 часов в день. При этом один рабочий за час добывает 1 кг алюминия или 2 кг никеля. Во второй шахте имеется 100 рабочих, каждый из которых готов трудиться 5 часов в день. При этом один рабочий за час добывает 2 кг алюминия или 1 кг никеля.

Обе шахты поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 2 кг алюминия приходится 1 кг никеля. При этом шахты договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 505474

Найдите все значения параметра при которых уравнение

имеет ровно два решения.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 525383

Склад представляет собой прямоугольный параллелепипед с целыми сторонами, контейнеры — прямоугольные параллелепипеды с размерами 1×1×3 м. Контейнеры на складе можно класть как угодно, но параллельно границам склада.

а) Может ли оказаться, что полностью заполнить склад размером 120 кубометров нельзя?

б) Может ли оказаться, что на склад объемом 100 кубометров не удастся поместить 33 контейнера?

в) Пусть объем склада равен 800 кубометров. Какой процент объема такого склада удастся гарантировано заполнить контейнерами при любой конфигурации склада?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.