№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Классификатор базовой части Классификатор планиметрии Классификатор стереометрии Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Вариант № 25908203

А. Ларин. Тренировочный вариант № 289.

1.

а) Решите уравнение 256 в степени синус x умножить на косинус x минус 18 умножить на 16 в степени синус x умножить на косинус x плюс 32=0.

б) Укажите корни этого уравнения, принадлежащие отрезку  левая квадратная скобка дробь, числитель — 9 Пи , знаменатель — 2 ;6 Пи правая квадратная скобка .

2.

В основании пирамиды SABCD лежит квадрат ABCD со стороной 2. Боковое ребро SA перпендикулярно основанию и равно 1. Точка F — середина AB.

а) Найдите угол между прямыми SF и AC.

б) Найдите площадь сечения пирамиды плоскостью, проходящей через точку F параллельно прямым BD и .

3.

Решите неравенство: 2 корень из { логарифм по основанию 2 ( минус x)} меньше логарифм по основанию 2 корень из { x в степени 2 } минус 3.

4.

В треугольнике ABC биссектриса угла B пересекает описанную окружность этого треугольника в точке F. Точка E — центр окружности, касающейся стороны АС и продолжений сторон AB и BC (вневписанной окружности). Точка O — центр вписанной окружности треугольника ABC.

а) Докажите, что отрезки AF и OF равны.

б) Найдите длину отрезка CF, если OE = 14.

5.

Всеволод и Александра в один день открыли в банке по вкладу на сумму 1 млн руб. с возможностью частичного снятия средств. Вместо выплаты процентов в конце очередного месяца банк увеличивал размер вклада на некоторую фиксированную сумму, но только в том случае, если клиент в течение данного месяца не снимал деньги со счета. Кроме того, Всеволод попал под условия бонусной акции, поэтому его ежемесячная прибавка оказалась выше, чем у Александры. Когда вклад Всеволода достиг суммы 1,2 млн руб., он каждый месяц с марта по август 2019 года снимал со счета по 25 тыс. руб., а вклад Александры продолжал ежемесячно расти. В конце июля 2019 года суммы на вкладах оказались одинаковыми, а спустя некоторое время сравнялись повторно. Определите размер вкладов Всеволода и Александры, когда они сравнялись повторно, если после августа деньги со счетов не снимались.

6.

Найдите все значения параметра a, при которых уравнение

( синус x минус a)( тангенс x минус a)=0

имеет единственное решение на интервале  левая круглая скобка минус дробь, числитель — Пи , знаменатель — 2 ; дробь, числитель — 3 Пи , знаменатель — 4 правая круглая скобка .

7.

На сайте школы идет голосование на звание «Лучший ученик года», где каждый посетитель голосует только за одного из претендентов. Рейтинг каждого претендента (доля голосов, отданных за него) выражается в процентах, округленных до целого числа. Например, числа 9,3; 17,5 и 19,9 округляются до 9; 18 и 20 соответственно.

а) Всего проголосовало 13 посетителей сайта. Мог ли рейтинг одного из претендентов равняться 41?

б) Пусть претендентов четверо. Могла ли сумма рейтингов быть больше 100?

в) На сайте отображалось, что рейтинг некоторого претендента равнялся 5. Это число не изменилось и после того, как Игорь проголосовал за него. При каком наименьшем числе отданных за всех претендентов голосов, включая Игоря, такое возможно?