СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 25976460

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 26631

В го­ро­де N живет 200 000 жи­те­лей. Среди них 15% детей и под­рост­ков. Среди взрос­лых жи­те­лей 45% не ра­бо­та­ет (пен­си­о­не­ры, сту­ден­ты, до­мо­хо­зяй­ки и т. п.). Сколь­ко взрос­лых жи­те­лей ра­бо­та­ет?

 


Ответ:

2
Задание 2 № 27510

На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха в Сочи за каж­дый месяц 1920 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Для на­гляд­но­сти жир­ные точки со­еди­не­ны ли­ни­ей. Опре­де­ли­те по ри­сун­ку наи­мень­шую сред­не­ме­сяч­ную тем­пе­ра­ту­ру в пе­ри­од с мая по де­кабрь 1920 года. Ответ дайте в гра­ду­сах Цель­сия.


Ответ:

3
Задание 3 № 315133

На клетчатой бумаге изображён круг. Какова площадь круга, если площадь заштрихованного сектора равна 32?


Ответ:

4
Задание 4 № 320188

Чтобы прой­ти в сле­ду­ю­щий круг со­рев­но­ва­ний, фут­боль­ной ко­ман­де нужно на­брать хотя бы 4 очка в двух играх. Если ко­ман­да вы­иг­ры­ва­ет, она по­лу­ча­ет 3 очка, в слу­чае ни­чьей — 1 очко, если про­иг­ры­ва­ет — 0 очков. Най­ди­те ве­ро­ят­ность того, что ко­ман­де удаст­ся выйти в сле­ду­ю­щий круг со­рев­но­ва­ний. Счи­тай­те, что в каж­дой игре ве­ро­ят­но­сти вы­иг­ры­ша и про­иг­ры­ша оди­на­ко­вы и равны 0,4.


Ответ:

5
Задание 5 № 502084

Най­ди­те ко­рень урав­не­ния


Ответ:

6
Задание 6 № 27829

Диа­го­на­ли ромба от­но­сят­ся как 3:4. Пе­ри­метр ромба равен 200. Най­ди­те вы­со­ту ромба.


Ответ:

7
Задание 7 № 323080

На рисунке изображён график некоторой функции y = f(x). Функция  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.


Ответ:

8
Задание 8 № 315130

В кубе точка  — се­ре­ди­на ребра , точка  — се­ре­ди­на ребра , точка  — се­ре­ди­на ребра Най­ди­те угол Ответ дайте в гра­ду­сах.


Ответ:

9
Задание 9 № 26830

Най­ди­те зна­че­ние вы­ра­же­ния при


Ответ:

10
Задание 10 № 27992

Урав­не­ние про­цес­са, в ко­то­ром участ­во­вал газ, за­пи­сы­ва­ет­ся в виде , где (Па) – дав­ле­ние в газе, – объeм газа в ку­би­че­ских мет­рах, a – по­ло­жи­тель­ная кон­стан­та. При каком наи­мень­шем зна­че­нии кон­стан­ты a умень­ше­ние в два раза объeма газа, участ­ву­ю­ще­го в этом про­цес­се, при­во­дит к уве­ли­че­нию дав­ле­ния не менее, чем в 4 раза?


Ответ:

11
Задание 11 № 99592

Из городов A и B навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 3 часа раньше, чем велосипедист приехал в A, а встретились они через 48 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?


Ответ:

12
Задание 12 № 245183

Най­ди­те наи­мень­шее зна­че­ние функ­ции


Ответ:

13
Задание 13 № 501507

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 511106

В правильной треугольной пирамиде SABC с вершиной S, все рёбра которой равны 4, точка N — середина ребра AC, точка O центр основания пирамиды, точка P делит отрезок SO в отношении 3 : 1, считая от вершины пирамиды.

а) Докажите, что прямая NP перпендикулярна прямой BS.

б) Найдите расстояние от точки B до прямой NP.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 484586

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 509582

Окружность с центром O проходит через вершины B и C большей боковой стороны прямоугольной трапеции ABCD и касается боковой стороны AD в точке T. Точка O лежит внутри трапеции ABCD.

а) Докажите, что угол BOC вдвое больше угла BTC.

б) Найдите расстояние от точки T до прямой BC, если основания трапеции AB и CD равны 4 и 9 соответственно.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 516802

Пенсионный фонд владеет ценными бумагами, которые стоят тыс. рублей в конце года В конце любого года пенсионный фонд может продать ценные бумаги и положить деньги на счёт в банке, при этом в конце каждого следующего года сумма на счёте будет увеличиваться в раз. Пенсионный фонд хочет продать ценные бумаги в конце такого года, чтобы в конце двадцать пятого года сумма на его счёте была наибольшей. Расчёты показали, что для этого ценные бумаги нужно продавать строго в конце двадцать первого года. При каких положительных значениях r это возможно?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 514388

Найдите все значения a, при каждом из которых система уравнений

имеет более двух решений.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 514433

Три числа назовем хорошей тройкой, если они могут быть длинами сторон треугольника.

Три числа назовем отличной тройкой, если они могут быть длинами сторон прямоугольного треугольника.

а) Даны 8 различных натуральных чисел. Может ли оказаться. что среди них не найдется ни одной хорошей тройки?

б) Даны 4 различных натуральных числа. Может ли оказаться, что среди них можно найти три отличных тройки?

в) Даны 12 различных чисел (необязательно натуральных). Какое наибольшее количество отличных троек могло оказаться среди них?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.