СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 25976462

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 26633

Кли­ент взял в банке кре­дит 12 000 руб­лей на год под 16%. Он дол­жен по­га­шать кре­дит, внося в банк еже­ме­сяч­но оди­на­ко­вую сумму денег, с тем чтобы через год вы­пла­тить всю сумму, взя­тую в кре­дит, вме­сте с про­цен­та­ми. Сколь­ко руб­лей он дол­жен вно­сить в банк еже­ме­сяч­но?

 


Ответ:

2
Задание 2 № 26864

На гра­фи­ке изоб­ра­же­на за­ви­си­мость кру­тя­ще­го мо­мен­та ав­то­мо­биль­но­го дви­га­те­ля от числа его обо­ро­тов в ми­ну­ту. На оси абс­цисс от­кла­ды­ва­ет­ся число обо­ро­тов в ми­ну­ту. На оси ор­ди­нат — кру­тя­щий мо­мент в Н · м. Чтобы ав­то­мо­биль начал дви­же­ние, кру­тя­щий мо­мент дол­жен быть не менее 60 Н · м. Какое наи­мень­шее число обо­ро­тов дви­га­те­ля в ми­ну­ту до­ста­точ­но, чтобы ав­то­мо­биль начал дви­же­ние?


Ответ:

3
Задание 3 № 27890

Найдите градусную величину дуги AC окружности, на которую опирается угол ABC. Ответ дайте в градусах.


Ответ:

4
Задание 4 № 320172

В тор­го­вом цен­тре два оди­на­ко­вых ав­то­ма­та про­да­ют кофе. Ве­ро­ят­ность того, что к концу дня в ав­то­ма­те за­кон­чит­ся кофе, равна 0,3. Ве­ро­ят­ность того, что кофе за­кон­чит­ся в обоих ав­то­ма­тах, равна 0,12. Най­ди­те ве­ро­ят­ность того, что к концу дня кофе оста­нет­ся в обоих ав­то­ма­тах.


Ответ:

5
Задание 5 № 315535

Най­ди­те ко­рень урав­не­ния


Ответ:

6
Задание 6 № 27843

Ос­но­ва­ния тра­пе­ции равны 3 и 2. Най­ди­те от­ре­зок, со­еди­ня­ю­щий се­ре­ди­ны диа­го­на­лей тра­пе­ции.


Ответ:

7
Задание 7 № 40130

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции Най­ди­те абс­цис­су точки, в ко­то­рой ка­са­тель­ная к гра­фи­ку па­рал­лель­на пря­мой или сов­па­да­ет с ней.


Ответ:

8
Задание 8 № 27206

Вер­ши­на A куба с реб­ром 1,6 яв­ля­ет­ся цен­тром сферы, про­хо­дя­щей через точку A1. Най­ди­те пло­щадь S части сферы, со­дер­жа­щей­ся внут­ри куба. В от­ве­те за­пи­ши­те ве­ли­чи­ну


Ответ:

9
Задание 9 № 26787

Най­ди­те , если


Ответ:

10
Задание 10 № 27959

В бо­ко­вой стен­ке вы­со­ко­го ци­лин­дри­че­ско­го бака у са­мо­го дна за­креплeн кран. После его от­кры­тия вода на­чи­на­ет вы­те­кать из бака, при этом вы­со­та стол­ба воды в нeм, вы­ра­жен­ная в мет­рах, ме­ня­ет­ся по за­ко­ну где – время в се­кун­дах, про­шед­шее с мо­мен­та от­кры­тия крана, – на­чаль­ная вы­со­та стол­ба воды, – от­но­ше­ние пло­ща­дей по­пе­реч­ных се­че­ний крана и бака, а – уско­ре­ние сво­бод­но­го па­де­ния (счи­тай­те м/с). Через сколь­ко се­кунд после от­кры­тия крана в баке оста­нет­ся чет­верть пер­во­на­чаль­но­го объeма воды?


Ответ:

11
Задание 11 № 323854

Две бри­га­ды, со­сто­я­щие из ра­бо­чих оди­на­ко­вой ква­ли­фи­ка­ции, од­но­вре­мен­но на­ча­ли вы­пол­нять два оди­на­ко­вых за­ка­за. В пер­вой бри­га­де было 16 ра­бо­чих, а во вто­рой — 25 ра­бо­чих. Через 7 дней после на­ча­ла ра­бо­ты в первую бри­га­ду пе­ре­шли 8 ра­бо­чих из вто­рой бри­га­ды. В итоге оба за­ка­за были вы­пол­не­ны од­но­вре­мен­но. Най­ди­те, сколь­ко дней по­тре­бо­ва­лось на вы­пол­не­ние за­ка­зов.


Ответ:

12
Задание 12 № 26708

Най­ди­те наи­мень­шее зна­че­ние функ­ции на от­рез­ке


Ответ:

13
Задание 13 № 519472

а) Ре­ши­те урав­не­ние

 

б) Най­ди­те его корни на про­ме­жут­ке


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 518114

В пра­виль­ной тре­уголь­ной приз­ме ABCA1B1C1 из­вест­ны рёбра: AB, AA1 = 4. Точка M — се­ре­ди­на ребра BC.

а) До­ка­жи­те, что пря­мые B1C и C1M пер­пен­ди­ку­ляр­ны.

б) Най­ди­те угол между пря­мой C1M и плос­ко­стью грани ABB1A1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 508210

Ре­ши­те не­ра­вен­ство:


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 517202

Пря­мая, про­хо­дя­щая через се­ре­ди­ну M ги­по­те­ну­зы AB пря­мо­уголь­но­го тре­уголь­ни­ка ABC, пер­пен­ди­ку­ляр­на CM и пе­ре­се­ка­ет катет AC в точке K. При этом AK : KC = 1 : 2.

а) До­ка­жи­те, что

б) Пусть пря­мые MK и BC пре­се­ка­ют­ся в точке P, а пря­мые AP и BK — в точке Q. Най­ди­те KQ, если BC = 


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 518147

Пен­си­он­ный фонд вла­де­ет цен­ны­ми бу­ма­га­ми, ко­то­рые стоят 10t тыс. руб­лей в конце года t (t = 1; 2;...). В конце лю­бо­го года пен­си­он­ный фонд может про­дать цен­ные бу­ма­ги и по­ло­жить день­ги на счёт в банке, при этом в конце каж­до­го сле­ду­ю­ще­го года сумма на счёте будет уве­ли­чи­вать­ся на 24%. В конце ка­ко­го года пен­си­он­но­му фонду сле­ду­ет про­дать цен­ные бу­ма­ги, чтобы в конце два­дца­то­го года сумма на его счёте была наи­боль­шей?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 510132

Най­ди­те все зна­че­ния при каж­дом из ко­то­рых си­сте­ма

имеет един­ствен­ное ре­ше­ние.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 505603

Трое дру­зей иг­ра­ли в шашки. Один из них сыг­рал 25 игр, а дру­гой — 17 игр. Мог ли тре­тий участ­ник сыг­рать  

а) 34;

б) 35;

в) 56 игр?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.