СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 25976463

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 77356

Спи­до­метр ав­то­мо­би­ля по­ка­зы­ва­ет ско­рость в милях в час. Какую ско­рость (в милях в час) по­ка­зы­ва­ет спи­до­метр, если ав­то­мо­биль дви­жет­ся со ско­ро­стью 36 км в час? (Счи­тай­те, что 1 миля равна 1,6 км.)


Ответ:

2
Задание 2 № 27529

На ри­сун­ке изоб­ра­жен гра­фик осад­ков в г. Ка­ли­нин­гра­де с 4 по 10 фев­ра­ля 1974 г. На оси абс­цисс от­кла­ды­ва­ют­ся дни, на оси ор­ди­нат — осад­ки в мм. Опре­де­ли­те по ри­сун­ку, сколь­ко дней из дан­но­го пе­ри­о­да вы­па­да­ло от 2 до 8 мм осад­ков.


Ответ:

3
Задание 3 № 315124

На клет­ча­той бу­ма­ге изоб­ра­же­ны два круга. Пло­щадь внут­рен­не­го круга равна 9. Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры.


Ответ:

4
Задание 4 № 320212

На ри­сун­ке изоб­ражён ла­би­ринт. Паук за­пол­за­ет в ла­би­ринт в точке «Вход». Раз­вер­нуть­ся и полз­ти назад паук не может, по­это­му на каж­дом раз­ветв­ле­нии паук вы­би­ра­ет один из путей, по ко­то­ро­му ещё не полз. Счи­тая, что выбор даль­ней­ше­го пути чисто слу­чай­ный, опре­де­ли­те, с какой ве­ро­ят­но­стью паук придёт к вы­хо­ду


Ответ:

5
Задание 5 № 77372

Ре­ши­те урав­не­ние Если урав­не­ние имеет более од­но­го корня, в от­ве­те за­пи­ши­те боль­ший из кор­ней.

 


Ответ:

6
Задание 6 № 27857

Чему равен ост­рый впи­сан­ный угол, опи­ра­ю­щий­ся на хорду, рав­ную ра­ди­у­су окруж­но­сти? Ответ дайте в гра­ду­сах.


Ответ:

7
Задание 7 № 317544

На рисунке изображен график функции и отмечены точки −2, −1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.


Ответ:

8
Задание 8 № 27116

Объем тре­уголь­ной пи­ра­ми­ды равен 15. Плос­кость про­хо­дит через сто­ро­ну ос­но­ва­ния этой пи­ра­ми­ды и пе­ре­се­ка­ет про­ти­во­по­лож­ное бо­ко­вое ребро в точке, де­ля­щей его в от­но­ше­нии 1 : 2, счи­тая от вер­ши­ны пи­ра­ми­ды. Най­ди­те боль­ший из объ­е­мов пи­ра­мид, на ко­то­рые плос­кость раз­би­ва­ет ис­ход­ную пи­ра­ми­ду.


Ответ:

9
Задание 9 № 26820

Найдите значение выражения , если


Ответ:

10
Задание 10 № 27972

По за­ко­ну Ома для пол­ной цепи сила тока, из­ме­ря­е­мая в ам­пе­рах, равна , где – ЭДС ис­точ­ни­ка (в воль­тах), Ом – его внут­рен­нее со­про­тив­ле­ние, – со­про­тив­ле­ние цепи (в омах). При каком наи­мень­шем со­про­тив­ле­нии цепи сила тока будет со­став­лять не более от силы тока ко­рот­ко­го за­мы­ка­ния  ? (Ответ вы­ра­зи­те в омах.)


Ответ:

11
Задание 11 № 99578

Име­ют­ся два со­су­да. Пер­вый со­дер­жит 30 кг, а вто­рой – 20 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если эти рас­тво­ры сме­шать, то по­лу­чит­ся рас­твор, со­дер­жа­щий 68% кис­ло­ты. Если же сме­шать рав­ные массы этих рас­тво­ров, то по­лу­чит­ся рас­твор, со­дер­жа­щий 70% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся в пер­вом со­су­де?


Ответ:

12
Задание 12 № 245176

Най­ди­те наи­боль­шее зна­че­ние функ­ции


Ответ:

13
Задание 13 № 484544

Ре­ши­те урав­не­ние


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 514447

В правильной треугольной призме АВСА′B′C′ сторона основания АВ равна 6, а боковое ребро АА′ равно 3. На ребре АВ отмечена точка К так, что АК = 1. Точки М и L — середины рёбер А′С′ и В′С′ соответственно. Плоскость γ параллельна прямой АС и содержит точки К и L.

а) Докажите, что прямая ВМ перпендикулярна плоскости γ;

б) Найдите расстояние от точки С до плоскости γ.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 513254

Ре­ши­те не­ра­вен­ство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 508235

В остроугольном треугольнике ABC проведены высоты AP и CQ.

а) Докажите, что угол PAC равен углу PQC.

б) Найдите радиус окружности, описанной около треугольника ABC, если известно, что PQ = 8 и ∠ABC = 60°.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 519662

В ре­ги­о­не A сред­не­ме­сяч­ный доход на душу на­се­ле­ния в 2014 году со­став­лял 43 740 руб­лей и еже­год­но уве­ли­чи­вал­ся на 25%. В ре­ги­о­не B сред­не­ме­сяч­ный доход на душу на­се­ле­ния в 2014 году со­став­лял 60 000 руб­лей. В те­че­ние трёх лет сум­мар­ный доход жи­те­лей ре­ги­о­на B уве­ли­чи­вал­ся на 17% еже­год­но, а на­се­ле­ние уве­ли­чи­ва­лось на m% еже­год­но. В 2017 году сред­не­ме­сяч­ный доход на душу на­се­ле­ния в ре­ги­о­нах A и B стал оди­на­ко­вым. Най­ди­те m.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 512818

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

имеет хотя бы один ко­рень.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 505541

Каж­дый из груп­пы уча­щих­ся схо­дил в кино или в театр, при этом воз­мож­но, что кто-то из них мог схо­дить и в кино, и в театр. Из­вест­но, что в те­ат­ре маль­чи­ков было не более от об­ще­го числа уча­щих­ся груп­пы, по­се­тив­ших театр, а в кино маль­чи­ков было не более от об­ще­го числа уча­щих­ся груп­пы, по­се­тив­ших кино.

 

а) Могло ли быть в груп­пе 10 маль­чи­ков, если до­пол­ни­тель­но из­вест­но, что всего в груп­пе было 20 уча­щих­ся?

б) Какое наи­боль­шее ко­ли­че­ство маль­чи­ков могло быть в груп­пе, если до­пол­ни­тель­но из­вест­но, что всего в груп­пе было 20 уча­щих­ся?

в) Какую наи­мень­шую долю могли со­став­лять де­воч­ки от об­ще­го числа уча­щих­ся в груп­пе без до­пол­ни­тель­но­го усло­вия пунк­тов а) и б)?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.