СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Вариант № 25976468

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 26624

Больному прописано лекарство, которое нужно пить по 0,5 г 3 раза в день в течение 21 дня. В одной упаковке 10 таблеток лекарства по 0,5 г. Какого наименьшего количества упаковок хватит на весь курс лечения?


Ответ:

2
Задание 2 № 27518

На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха в Ека­те­рин­бур­ге (Сверд­лов­ске) за каж­дый месяц 1973 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Опре­де­ли­те по диа­грам­ме наи­боль­шую сред­не­ме­сяч­ную тем­пе­ра­ту­ру во вто­рой по­ло­ви­не 1973 года. Ответ дайте в гра­ду­сах Цель­сия.


Ответ:

3
Задание 3 № 27887

Найдите величину угла ABC. Ответ дайте в градусах.


Ответ:

4
Задание 4 № 320180

Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.


Ответ:

5
Задание 5 № 26659

Найдите корень уравнения


Ответ:

6
Задание 6 № 27640

Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь.


Ответ:

7
Задание 7 № 119972

Прямая y = 3x + 1 является касательной к графику функции ax2 + 2x + 3. Найдите a.


Ответ:

8
Задание 8 № 27168

Объем од­но­го куба в 8 раз боль­ше объ­е­ма дру­го­го куба. Во сколь­ко раз пло­щадь по­верх­но­сти пер­во­го куба боль­ше пло­ща­ди по­верх­но­сти вто­ро­го куба?


Ответ:

9
Задание 9 № 26756

Най­ди­те зна­че­ние вы­ра­же­ния


Ответ:

10
Задание 10 № 319860

Независимое агентство намерено ввести рейтинг новостных интернет-изданий на основе оценок информативности In, оперативности Op, объективности публикаций Tr, а также качества сайта Q. Каждый отдельный показатель − целое число от –2 до 2.

Составители рейтинга считают, что объективность ценится втрое, а информативность публикаций — впятеро дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид

Если по всем четырем показателям какое-то издание получило одну и ту же оценку, то рейтинг должен совпадать с этой оценкой. Найдите число A, при котором это условие будет выполняться.


Ответ:

11
Задание 11 № 99579

Бригада маляров красит забор длиной 240 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 60 метров забора. Определите, сколько дней бригада маляров красила весь забор.


Ответ:

12
Задание 12 № 26695

Най­ди­те наи­боль­шее зна­че­ние функ­ции на от­рез­ке


Ответ:

13
Задание 13 № 502094

а) Ре­ши­те урав­не­ние

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 519473

Дана пра­виль­ная че­ты­рех­уголь­ная приз­ма ABCDA1B1C1D1. На ребре AA1 от­ме­че­на точка K так, что AK : KA1 = 1 : 2. Плос­кость α про­хо­дит через точки B и K па­рал­лель­но пря­мой AC. Эта плос­кость пе­ре­се­ка­ет ребро DD1 в точке M.

а) До­ка­жи­те, что MD : MD1 = 2 : 1.

б) Най­ди­те пло­щадь се­че­ния, если AB = 4, AA1 = 6.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 508347

Ре­ши­те не­ра­вен­ство:


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 525380

Две окруж­но­сти ка­са­ют­ся внеш­ним об­ра­зом в точке K. Пря­мая AB ка­са­ет­ся пер­вой окруж­но­сти в точке A, а вто­рой — в точке B. Пря­мая BK пе­ре­се­ка­ет первую окруж­ность в точке D, пря­мая AK пе­ре­се­ка­ет вто­рую окруж­ность в точке C.

а) До­ка­жи­те, что пря­мые AD и BC па­рал­лель­ны.

б) Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка BCD, если из­вест­но, что ра­ди­ус пер­вой окруж­но­сти равен 4, а ра­ди­ус вто­рой окруж­но­сти равен 1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 511220

1 марта 2010 года Аркадий взял в банке кредит под 10% годовых. Схема выплаты кредита следующая: 1 марта каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Аркадий переводит в банк платеж. Весь долг Аркадий выплатил за 3 платежа, причем второй платеж оказался в два раза больше первого, а третий – в три раза больше первого. Сколько рублей взял в кредит Аркадий, если за три года он выплатил банку 2 395 800 рублей?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 484630

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний имеет ровно два ре­ше­ния.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 510077

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 2970. В каждом числе поменяли местами первую и вторую цифры (например, число 16 заменили на число 61).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 3 раза меньше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 5 раз меньше, чем сумма исходных чисел?

в) Найдите наименьшее возможное значение суммы получившихся чисел.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.