На сторонах AD и BC параллелограмма ABCD взяты соответственно точки M и N , причём M — середина AD, а BN : NC = 1 : 3.
а) Докажите, что прямые AN и AC делят отрезок BM на три равные части.
б) Найдите площадь четырёхугольника, вершины которого находятся в точках С, N и точках пересечения прямой BM c прямыми AN и AC , если площадь параллелограмма ABCD равна 27.
Решение.
а) Обозначим точки пересечения прямой BM c прямыми AN и AC буквами P и R соответственно.
Пусть O – точка пересечения диагоналей параллелограмма. Тогда AO и BM — медианы треугольника ABD, значит,

Из подобия треугольников BPN и MPA находим, что

Значит,
Из доказанного следует, что 
б) Пусть площадь параллелограмма равна S . Из подобия треугольников MRA и BRC с коэффициентом
следует, что высота треугольника BRC, проведённая к стороне BC, составляет
высоты параллелограмма, проведённой к той же стороне. Следовательно, площадь треугольника BRC равна

Аналогично найдём площадь треугольника BNP . Его высота, проведённая к BN , составляет
высоты параллелограмма, проведённой к стороне BC , а сама сторона BN в четыре раза меньше стороны параллелограмма BC. Поэтому

Следовательно, площадь четырёхугольника PRCN равна

Ответ: 
Критерии проверки:Критерии оценивания выполнения задания | Баллы |
---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
Решение не соответствует ни одному из критериев, приведённых выше | 0 |
Максимальный балл | 3 |