№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Классификатор базовой части Классификатор планиметрии Классификатор стереометрии Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Сечения многогранников
1.

В прямоугольном параллелепипеде ABCDA1B1C1D1 известны рёбра AB = 8, AD = 7, AA1 = 5. Точка W принадлежит ребру DD1 и делит его в отношении 1 : 4, считая от вершины D. Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки C, W и A1.

2.

Площадь боковой поверхности правильной четырёхугольной пирамиды SABCD равна 108, а площадь полной поверхности этой пирамиды равна 144. Найдите площадь сечения, проходящего через вершину S этой пирамиды и через диагональ её основания.

3.

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC с ос­но­ва­ни­ем ABC угол ASB равен 36°. На ребре SC взята точка M так, что AM — бис­сек­три­са угла SAC. Пло­щадь се­че­ния пи­ра­ми­ды, про­хо­дя­ще­го через точки A, M и B, равна Най­ди­те сто­ро­ну ос­но­ва­ния.

4.

В правильной четырёхугольной пирамиде SABCD с основанием ABCD проведено сечение через середины рёбер AB и BC и вершину S. Найдите площадь этого сечения, если боковое ребро пирамиды равно 5, а сторона основания равна 4.

5.

В правильной треугольной пирамиде MABC с вершиной M высота равна 9, а боковые рёбра равны 15. Найдите площадь сечения этой пирамиды плоскостью, проходящей через середины сторон AB и BC параллельно прямой MB.

6.

В правильной треугольной пирамиде MABC с вершиной M высота равна 6, а боковые рёбра равны 9. Найдите площадь сечения этой пирамиды плоскостью, проходящей через середины сторон AC и BC параллельно прямой MC.

7.

В прямоугольном параллелепипеде известны рёбра: AB = 3, AD = 2, AA1 = 5. Точка O принадлежит ребру BB1 и делит его в отношении 2 : 3, считая от вершины B. Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки A, O и C1.

8.

Точка E — середина ребра CC1 куба ABCDA1B1C1D1. Найдите площадь сечения куба плоскостью A1BE, если ребра куба равны 2.

9.

Точка E — се­ре­ди­на ребра BB1 куба ABCDA1B1C1D1. Най­ди­те пло­щадь се­че­ния куба плос­ко­стью D1AE, если ребра куба равны 4.

10.

В правильной треугольной призме ABCA1B1C1 стороны основания равны 6, боковые рёбра равны 4. Изобразите сечение, проходящее через вершины A, B и середину ребра A1C1. Найдите его площадь.

11.

В правильной треугольной призме ABCA1B1C1 стороны основания равны 8, боковые рёбра равны Изобразите сечение, проходящее через вершины A, C и середину ребра A1B1. Найдите его площадь.

12.

В правильной четырехугольной пирамиде MABCD с вершиной M стороны основания равны 15, а боковые ребра равны 16. Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.

13.

В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 3, а боковые рёбра равны 8. Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.

14.

В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания равна 20, а боковое ребро AA1 = 7. Точка M принадлежит ребру A1D1 и делит его в отношении 2 : 3, считая от вершины D1. Найдите площадь сечения этой призмы плоскостью, проходящей через точки B, D и M.

15.

В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания равна 11, а боковое ребро AA1 = 7. Точка K принадлежит ребру B1C1 и делит его в отношении 8 : 3, считая от вершины B1. Найдите площадь сечения этой призмы плоскостью, проходящей через точки B, D и K.

16.

В правильной треугольной пирамиде SABC боковое ребро SA = 5, а сторона основания AB = 4. Найдите площадь сечения пирамиды плоскостью, проходящей через ребро AB перпендикулярно ребру SC .

17.

В правильной треугольной пирамиде SABC боковое ребро SA = 6, а сторона основания AB = 4. Найдите площадь сечения пирамиды плоскостью, проходящей через ребро AB перпендикулярно ребру SC .

18.

В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 6, а боковые рёбра 10. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что AD = AE = LM = 4. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.

19.

В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 6, а боковые рёбра 8. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что СD = BE = LM = 2. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.

20.

Плоскость α пересекает два шара, имеющих общий центр. Площадь сечения меньшего шара этой плоскостью равна 8. Плоскость β, параллельная плоскости α, касается меньшего шара, а площадь сечения этой плоскостью большего шара равна 5. Найдите площадь сечения большего шара плоскостью α.

21.

Плоскость α пересекает два шара, имеющих общий центр. Площадь сечения меньшего шара этой плоскостью равна 6. Плоскость β, параллельная плоскости α, касается меньшего шара, а площадь сечения этой плоскостью большего шара равна 4. Найдите площадь сечения большего шара плоскостью α.

22.

Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1 : 3. Найдите площадь сечения конуса плоскостью ABP.

23.

В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 3, а ребро MA = 6. На ребре AC находится точка D, на ребре AB точка E, а на ребре AM — точка L. Известно, что AD = AL = 2, и BE = 1. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.

24.

В треугольной пирамиде MABC, в основаниии которой лежит правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 6, а ребро MA равно 11. На ребре AC находится точка D, на ребре AB точка E, а на ребре AM — точка F. Известно, что AD = 4 и BE = 2, F — середина AM. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и F.

25.

В правильной четырёхугольной пирамиде SABCD с основанием ABCD проведено сечение через середины рёбер AB и BC и вершину S. Найдите площадь этого сечения, если боковое ребро пирамиды равно 5, а сторона основания равна 4.

26.

В правильной четырёхугольной пирамиде SABCD с основанием ABCD проведено сечение через середины ребер АВ и ВС и вершину S. Найдите площадь этого сечения, если все ребра пирамиды равны 8.

27.

Плоскость α перпендикулярна основанию правильной треугольной пирамиды SABC и делит стороны AB и BC основания пополам.

а) Докажите, что плоскость α делит боковое ребро в отношении 1 : 3, считая от вершины S.

б) Найдите отношение объемов многогранников, на которые плоскость α разбивает пирамиду.

28.

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 ребро основания AB = 2, высота AA1 = 6, точка M — середина F1E1, проведено сечение через точки A, C и M.

а) Докажите, что сечение проходит через середину ребра D1E1.

б) Найдите площадь этого сечения.

29.

В правильной пирамиде SABC точки M и N — середины ребер AB и BC соответственно. На боковом ребре SA отмечена точка K, SK : KA = 1 : 3. Сечение пирамиды плоскостью MNK является четырехугольником, диагонали которого пересекаются в точке Q.

а) Докажите, что точка Q лежит на высоте пирамиды.

б) Найдите площадь сечения пирамиды этой плоскостью, если известно, что сторона основания равна 2, а высота пирамиды равна 4.

30.

Основанием четырехугольной пирамиды SABCD с равными боковыми ребрами является прямоугольник ABCD, площадь которого равна 25. Плоскость, параллельная плоскости основания, пересекает ребро AS в точке A1, а высоту пирамиды — в середине О. Угол между гранями ADS и BCS равен 60°.

а) Докажите, что сечение пирамиды OABCD плоскостью BCA1 делит ее высоту в отношении 1 : 2, считая от вершины.

б) Найдите площадь сечения пирамиды OABCD плоскостью BCA1.

31.

В основании пирамиды SABCD лежит квадрат ABCD со стороной 2. Боковое ребро SA перпендикулярно основанию и равно 1. Точка F — середина AB.

а) Найдите угол между прямыми SF и AC.

б) Найдите площадь сечения пирамиды плоскостью, проходящей через точку F параллельно прямым BD и .

32.

В основании прямоугольного параллелепипеда ABCDA1B1C1D1 лежит квадрат ABCD со стороной 1, боковое ребро равно 2. Плоскость сечения проходит через середины ребер AD и CC1 параллельно диагонали B1D.

а) Докажите, что плоскость сечения делит ребро BB1 в отношении 1 : 5, считая от точки B1.

б) Найдите угол между плоскостью сечения и плоскостью основания параллелепипеда.