№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Классификатор базовой части Классификатор планиметрии Классификатор стереометрии Методы алгебры Методы геометрии Раздел Раздел кодификатора ФИПИ/Решу ЕГЭ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Расстояние между прямыми и плоскостями
1.

В правильной четырёхугольной пирамиде SABCD сторона AB основания равна а высота SH пирамиды равна 3. Точки M и N — середины рёбер CD и AB, соответственно, а NT — высота пирамиды NSCD с вершиной N и основанием SCD.

а) Докажите, что точка T является серединой SM.

б) Найдите расстояние между NT и SC.

2.

Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Грань ACC1A1 является квадратом.

а) Докажите, что прямые CA1 и AB1 перпендикулярны.

б) Найдите расстояние между прямыми CA1 и AB1, если AC = 4, BC = 7.

3.

В правильной четырёхугольной пирамиде PABCD сторона основания ABCD равна 12, боковое ребро PA . Через вершину A проведена плоскость α, перпендикулярная прямой PC и пересекающая ребро PC в точке K.

а) Докажите, что плоскость α делит высоту PH пирамиды PABCD в отношении 2 : 1, считая от вершины P.

б) Найдите расстояние между прямыми PH и BK.

4.

В кубе ABCDA1B1C1D1 все ребра равны 6.

а) Докажите, что угол между прямыми AC и BC1 равен 60°.

б) Найдите расстояние между прямыми AC и BC1.

5.

В кубе ABCDA1B1C1D1 рёбра равны 1. На продолжении отрезка A1C1 за точку C1 отмечена точка M так, что A1C1 = C1M, а на продолжении отрезка B1C за точку C отмечена точка N так, что B1C = CN.

а) Докажите, что MN = MB1.

б) Найдите расстояние между прямыми B1C1 и MN.

6.

Дана пирамида SABC, в которой

а) Докажите, что ребро SA перпендикулярно ребру BC.

б) Найдите расстояние между ребрами BC и SA.

7.

В правильной треугольной призме ABCA1B1C1 все рёбра равны 2. Точка M — середина ребра AA1.

а) Докажите, что прямые MB и B1C перпендикулярны.

б) Найдите расстояние между прямыми MB и B1C.

8.

В правильной треугольной пирамиде SABC сторона основания AB равна 9, а боковое ребро SA = 6. На рёбрах AB и SC отмечены точки K и M соответственно, причём AK : KB = SM : MC = 2 : 7. Плоскость α содержит прямую KM и параллельна прямой SA.

а) Докажите, что плоскость α делит ребро SB в отношении 2 : 7, считая от вершины S.

б) Найдите расстояние между прямыми SA и KM.

9.

В правильной четырёхугольной пирамиде SABCD сторона основания AB равна 4, а боковое ребро SA = 8. На рёбрах CD и SC отмечены точки N и K соответственно, причём DN : NC = SK : KC = 1 : 3. Плоскость α содержит прямую KN и параллельна прямой BC.

а) Докажите, что плоскость α делит ребро AB в отношении 1 : 3, считая от вершины A.

б) Найдите расстояние между прямыми SA и KN.

10.

Дан куб ABCDA1B1C1D1 с ребром 2.

а) Докажите, что плоскости A1BD и B1D1C параллельны.

б) Найдите расстояние между плоскостями A1BD и B1D1C.

11.

В кубе ABCDA1B1C1D1 точка O1 — центр квадрата ABCD, точка O2 — центр квадрата CC1D1D.

а) Докажите, что прямые A1O1 и B1O2 скрещиваются.

б) Найдите расстояние между прямыми A1O1 и B1O2 , если ребро куба равно 1.

12.

В правильном тетраэдре MNPQ через биссектрисы NA и QB граней MNP и QNP проведены параллельные плоскости.

а) Найдите отношение суммы объемов отсекаемых от MNPQ тетраэдров к объему MNPQ

б) Найдите расстояние между NA и QB, если ребро тетраэдра равно 1.

13.

В правильном тетраэдре ABCD точка К — середина ребра АВ, точка Е лежит на ребре CD и EC : ED = 1 : 2.

а) Найдите угол между прямыми ВС и КЕ.

б) Найдите расстояние между прямыми ВС и КЕ, если сторона тетраэдра равна 6.