Тип 13 № 484540 

Классификатор алгебры: Тригонометрические уравнения, Тригонометрические уравнения, сводимые к целым на синус или косинус, Уравнения, рациональные относительно тригонометрических функций
Методы алгебры: Формулы двойного угла
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения
Уравнения. Тригонометрия и иррациональности
i
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
Решение. а) Найдем область определения уравнения:
Найдем корни числителя, используем формулу :
откуда
С учетом области определения уравнения получаем:
б) Заметим, что значит, из первой серии корней указанному отрезку принадлежит только
Из неравенств следует, что ни один из корней второй серии не принадлежит указанному отрезку.
Ответ: а) б)
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получены верные ответы в обоих пунктах. | 2 |
| Обоснованно получен верный ответ в пункте а), ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения пункта а) и пункта б). | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |
Ответ: а)
б) 
484540
а)
б) 
Классификатор алгебры: Тригонометрические уравнения, Тригонометрические уравнения, сводимые к целым на синус или косинус, Уравнения, рациональные относительно тригонометрических функций
Методы алгебры: Формулы двойного угла
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения
PDF-версии: