Тип 15 № 676935 

Классификатор алгебры: Неравенства с логарифмами по переменному основанию
Методы алгебры: Рационализация неравенств. Логарифмы, Введение замены, Выделение полного квадрата
Неравенства. Неравенства с логарифмами по переменному основанию, применение рационализации
i
Решите неравенство
Решение. Преобразуем неравенство:
Пусть тогда:
Вернёмся к исходной переменной. Решим уравнение :
Сделаем проверку: число 5 подходит, а число 10 не подходит, поскольку
— верно,
— неверно.
Значит, корнем является только число 5.
Решим неравенство используя метод рационализации:
Объединяя ответы рассмотренных случаев, получаем ответ.
Ответ:
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ | 2 |
| Обоснованно получен ответ, отличающийся от верного исключением точек, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |
Ответ: 
676935
Классификатор алгебры: Неравенства с логарифмами по переменному основанию
PDF-версии: