математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Каталог заданий.
Сечения многогранников
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задания Д6 C2 № 501752

В прямоугольном параллелепипеде ABCDA1B1C1D1 известны рёбра AB = 8, AD = 7, AA1 = 5. Точка W принадлежит ребру DD1 и делит его в отношении 1 : 4, считая от вершины D. Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки C, W и A1.


Аналоги к заданию № 501752: 502314 503147 510662 501885 Все

Источник: ЕГЭ по математике 03.06.2013. Основная волна. Восток. Вариант 402.

2
Задания Д6 C2 № 507319

Площадь боковой поверхности правильной четырёхугольной пирамиды SABCD равна 108, а площадь полной поверхности этой пирамиды равна 144. Найдите площадь сечения, проходящего через вершину S этой пирамиды и через диагональ её основания.


Аналоги к заданию № 507319: 511421 Все


3
Задания Д6 C2 № 507596

В правильной треугольной пирамиде SABC с основанием ABC угол ASB равен 36°. На ребре SC взята точка M так, что AM — биссектриса угла SAC. Площадь сечения пирамиды, проходящего через точки A, M и B, равна Найдите сторону основания.


Аналоги к заданию № 507596: 500918 511447 Все

Источник:

4
Задания Д6 C2 № 507830

В правильной четырёхугольной пирамиде SABCD с основанием ABCD проведено сечение через середины рёбер AB и BC и вершину S. Найдите площадь этого сечения, если боковое ребро пирамиды равно 5, а сторона основания равна 4.

Решение · ·

5
Задания Д6 C2 № 512883

В правильной треугольной пирамиде MABC с вершиной M высота равна 9, а боковые рёбра равны 15. Найдите площадь сечения этой пирамиды плоскостью, проходящей через середины сторон AB и BC параллельно прямой MB.


6
Задания Д6 C2 № 512889

В правильной треугольной пирамиде MABC с вершиной M высота равна 6, а боковые рёбра равны 9. Найдите площадь сечения этой пирамиды плоскостью, проходящей через середины сторон AC и BC параллельно прямой MC.


7
Задания Д6 C2 № 513280

В правильной шестиугольной пирамиде SABCDEF с вершиной S боковое ребро вдвое больше стороны основания.

а) Докажите, что плоскость, проходящая через середины рёбер SA и SE и вершину C, делит ребро SB в отношении 3 : 1, считая от вершины S.

б) Найдите отношение, в котором плоскость, проходящая через середины рёбер SA и SE и вершину C, делит ребро SF, считая от вершины S.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

8
Задания Д6 C2 № 501885

В прямоугольном параллелепипеде известны рёбра: AB = 3, AD = 2, AA1 = 5. Точка O принадлежит ребру BB1 и делит его в отношении 2 : 3, считая от вершины B. Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки A, O и C1.

Решение · ·

9
Задания Д6 C2 № 500193

Точка E — середина ребра CC1 куба ABCDA1B1C1D1. Найдите площадь сечения куба плоскостью A1BE, если ребра куба равны 2.


Аналоги к заданию № 500193: 500474 Все


10
Задания Д6 C2 № 500474

Точка E — середина ребра BB1 куба ABCDA1B1C1D1. Найдите площадь сечения куба плоскостью D1AE, если ребра куба равны 4.


11
Задания Д6 C2 № 500962

В правильной треугольной призме ABCA1B1C1 стороны основания равны 6, боковые рёбра равны 4. Изобразите сечение, проходящее через вершины A, B и середину ребра A1C1. Найдите его площадь.


Аналоги к заданию № 500962: 501124 500968 Все

Источник:

12
Задания Д6 C2 № 500968

В правильной треугольной призме ABCA1B1C1 стороны основания равны 8, боковые рёбра равны Изобразите сечение, проходящее через вершины A, C и середину ребра A1B1. Найдите его площадь.

Решение · ·

13
Задания Д6 C2 № 501690

В правильной четырехугольной пирамиде MABCD с вершиной M стороны основания равны 15, а боковые ребра равны 16. Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.


Аналоги к заданию № 501690: 501730 501985 510707 511367 501945 512883 512889 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 03.06.2013. Ос­нов­ная волна. Центр. Ва­ри­ант 1.

14
Задания Д6 C2 № 501945

В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 3, а боковые рёбра равны 8. Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.

Решение · ·

15
Задания Д6 C2 № 501710

В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания равна 20, а боковое ребро AA1 = 7. Точка M принадлежит ребру A1D1 и делит его в отношении 2 : 3, считая от вершины D1. Найдите площадь сечения этой призмы плоскостью, проходящей через точки B, D и M.


Аналоги к заданию № 501710: 511377 502294 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 03.06.2013. Ос­нов­ная волна. Сибирь. Ва­ри­ант 302.

16
Задания Д6 C2 № 502294

В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания равна 11, а боковое ребро AA1 = 7. Точка K принадлежит ребру B1C1 и делит его в отношении 8 : 3, считая от вершины B1. Найдите площадь сечения этой призмы плоскостью, проходящей через точки B, D и K.


17
Задания Д6 C2 № 504416

В правильной треугольной пирамиде SABC боковое ребро SA = 5, а сторона основания AB = 4. Найдите площадь сечения пирамиды плоскостью, проходящей через ребро AB перпендикулярно ребру SC .


Аналоги к заданию № 504416: 511387 504437 510373 Все

Источник:
Решение · ·

18
Задания Д6 C2 № 504437

В правильной треугольной пирамиде SABC боковое ребро SA = 6, а сторона основания AB = 4. Найдите площадь сечения пирамиды плоскостью, проходящей через ребро AB перпендикулярно ребру SC .


19
Задания Д6 C2 № 505417

В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 6, а боковые рёбра 10. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что AD = AE = LM = 4. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.


Аналоги к заданию № 505417: 505450 505499 510849 510855 510879 511405 505423 505471 505493 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Ос­нов­ная волна. Запад. Ва­ри­ант 301.

20
Задания Д6 C2 № 505423

В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 6, а боковые рёбра 8. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что СD = BE = LM = 2. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.


21
Задания Д6 C2 № 502115

Плоскость α пересекает два шара, имеющих общий центр. Площадь сечения меньшего шара этой плоскостью равна 8. Плоскость β, параллельная плоскости α, касается меньшего шара, а площадь сечения этой плоскостью большего шара равна 5. Найдите площадь сечения большего шара плоскостью α.


Аналоги к заданию № 502115: 504945 510688 502135 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 23.04.2013. До­сроч­ная волна. Ва­ри­ант 901.
Решение · ·

22
Задания Д6 C2 № 502135

Плоскость α пересекает два шара, имеющих общий центр. Площадь сечения меньшего шара этой плоскостью равна 6. Плоскость β, параллельная плоскости α, касается меньшего шара, а площадь сечения этой плоскостью большего шара равна 4. Найдите площадь сечения большего шара плоскостью α.


23
Задания Д6 C2 № 505103

Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1 : 3. Найдите площадь сечения конуса плоскостью ABP.

Источник: ЕГЭ 28.04.2014 по ма­те­ма­ти­ке. До­сроч­ная волна. Ва­ри­ант 1.

24
Задания Д6 C2 № 505471

В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 3, а ребро MA = 6. На ребре AC находится точка D, на ребре AB точка E, а на ребре AM — точка L. Известно, что AD = AL = 2, и BE = 1. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.


25
Задания Д6 C2 № 505493

В треугольной пирамиде MABC, в основаниии которой лежит правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 6, а ребро MA равно 11. На ребре AC находится точка D, на ребре AB точка E, а на ребре AM — точка F. Известно, что AD = 4 и BE = 2, F — середина AM. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и F.


26
Задания Д6 C2 № 500643

В правильной четырёхугольной пирамиде SABCD с основанием ABCD проведено сечение через середины рёбер AB и BC и вершину S. Найдите площадь этого сечения, если боковое ребро пирамиды равно 5, а сторона основания равна 4.

Решение · ·

27
Задания Д6 C2 № 500639

В правильной четырёхугольной пирамиде SABCD с основанием ABCD проведено сечение через середины ребер АВ и ВС и вершину S. Найдите площадь этого сечения, если все ребра пирамиды равны 8.


Аналоги к заданию № 500639: 511345 511501 500643 507830 Все


28
Задания Д6 C2 № 515668

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 стороны основания равны 5, а боковые рёбра равны 11.

а) Докажите, что прямые CA1 и C1D1 перпендикулярны.

б) Найдите площадь сечения призмы плоскостью, проходящей через вершины C, A1 и F1.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 2. (Часть C)., Типовые тестовые задания по математике под редакцией И. В. Ященко, 2017. Задания С2, C4.

29
Задания Д6 C2 № 516275

Точки и — середины рёбер и куба соответственно.

а) Докажите, что прямые и перпендикулярны.

б) Найдите площадь сечения куба плоскостью, проходящей через точку и перпендикулярной прямой , если ребро куба равно 10.


Аналоги к заданию № 516275: 516256 Все


Пройти тестирование по этим заданиям