СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 6 № 319056

Пло­щадь па­рал­ле­ло­грам­ма ABCD равна 153. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма A'B'C'D', вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся се­ре­ди­ны сто­рон дан­но­го па­рал­ле­ло­грам­ма.

Решение.

Четырехугольник, вершинами которого являются середины сторон произвольного четырехугольника, является параллелограммом, площадь которого равна половине площади исходного четырехугольника (см. параллелограмм Вариньона).

 

Поэтому его площадь равна 76,5.

 

Ответ:76,5.

Раздел кодификатора ФИПИ/Решу ЕГЭ: 5.1.2 Параллелограмм, прямоугольник, ромб, квадрат, 5.5.5 Площадь треугольника, параллелограмма, трапеции, круга, сектора