≡ математика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 7 № 40129

На рисунке изображен график функции y=f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 8. Найдите f '(8).

Решение.

Поскольку касательная проходит через начало координат, ее уравнение имеет вид y = kx. Эта прямая проходит через точку (8; 10), поэтому 10 = 8 · k, откуда k = 1,25. Поскольку угловой коэффициент касательной равен значению производной в точке касания, получаем: f '(8) = 1,25.

 

Ответ: 1,25.


Аналоги к заданию № 40129: 54801 Все

Раздел кодификатора ФИПИ/Решу ЕГЭ: 4.1.1 Понятие о производной функции, геометрический смысл производной, 4.1.3 Уравнение касательной к графику функции, 4.2.1 Применение производной к исследованию функций и построению графиков