Задания
Версия для печати и копирования в MS Word
Тип 14 № 500448
i

В пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA1B1C1D1E1F1 все рёбра равны 1.

а)  До­ка­жи­те, что плос­ко­сти DEA_1 и BDD_1 пер­пен­ди­ку­ляр­ны.

б)  Най­ди­те рас­сто­я­ние от точки B до плос­ко­сти DEA1.

Спрятать решение

Ре­ше­ние.

а)  Пря­мые BB1 и DB пер­пен­ди­ку­ляр­ны пря­мой ED. Плос­кость DEA1, со­дер­жа­щая пря­мую ED, пер­пен­ди­ку­ляр­на плос­ко­сти BB1D по при­зна­ку пер­пен­ди­ку­ляр­но­сти плос­ко­стей.

б)  Ис­ко­мое рас­сто­я­ние равно вы­со­те BH пря­мо­уголь­но­го тре­уголь­ни­ка BB1D, в ко­то­ром BB1  =  1, BD = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , B1D  =  2:

BH= дробь: чис­ли­тель: BB_1 умно­жить на BD, зна­ме­на­тель: B_1D конец дроби = дробь: чис­ли­тель: 1 умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби .

Ответ:  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а), и обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те б)3
По­лу­чен обос­но­ван­ный ответ в пунк­те б)

ИЛИ

име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а), и при обос­но­ван­ном ре­ше­нии пунк­та б) по­лу­чен не­вер­ный ответ из-за ариф­ме­ти­че­ской ошиб­ки

2
Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а),

ИЛИ

при обос­но­ван­ном ре­ше­нии пунк­та б) по­лу­чен не­вер­ный ответ из-за ариф­ме­ти­че­ской ошиб­ки,

ИЛИ

обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те б) с ис­поль­зо­ва­ни­ем утвер­жде­ния пунк­та а), при этом пункт а) не вы­пол­нен

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, при­ведённых выше0
Мак­си­маль­ный балл3
Методы геометрии: Тео­ре­ма о трёх пер­пен­ди­ку­ля­рах
Классификатор стереометрии: Пра­виль­ная ше­сти­уголь­ная приз­ма, Рас­сто­я­ние от точки до плос­ко­сти, Се­че­ние  — па­рал­ле­ло­грамм, Се­че­ние, про­хо­дя­щее через три точки, По­стро­е­ния в про­стран­стве, Пра­виль­ная ше­сти­уголь­ная пи­ра­ми­да, Рас­сто­я­ние от точки до пря­мой