а) Дан прямоугольный параллелепипед Докажите, что все грани тетраэдра
— равные треугольники (тетраэдр, обладающий таким свойством, называют равногранным).
б) В прямоугольном параллелепипеде ABCDA1B1C1D1, у которого AB = 4, BC = 6, CC1 = 4, найдите тангенс угла между плоскостью ABC и прямой EF, проходящей через середины ребер AA1 и С1D1.
а) Противоположные грани прямоугольного параллелепипеда — равные прямоугольники, поэтому их диагонали равны. Таким образом,
Значит, все грани равны по третьему признаку равенства треугольников.
б) Будем искать угол между прямой EF и плоскостью грани A1B1C1D1. Точка A1 — проекция точки E на эту плоскость. Искомый угол
Ответ:

