СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости



Задания
Версия для печати и копирования в MS Word
Задание 16 № 507889

Хорды AD, BE и CF окружности делят друг друга на три равные части.

а) Докажите, что эти хорды равны.

б) Найдите площадь шестиугольника ABCDEF, если точки A, B, C, D, E последовательно расположены на окружности, а радиус окружности равен

Решение.

а) Пусть две хорды равны 3x и 3y. По теореме о произведении пересекающихся хорд 2x · x = 2y · y. Отсюда находим, что x = y, значит, эти хорды равны. Аналогично докажем, что третья хорда равна каждой из первых двух.

б) Равные хорды равноудалены от центра окружности, поэтому центр равностороннего треугольника с вершинами в точках попарного пересечения хорд совпадает с центром данной окружности. Пусть хорды BE и CF пересекают хорду AD в точках P и Q соответственно, хорды BE и FC пересекаются в точке T, а H — проекция центра O на хорду AD. Тогда H — общая середина отрезков AD и PQ, а OH — радиус вписанной окружности равностороннего треугольника PQT со стороной PQ.

Через точку T проведём прямую, параллельную AD, через точку P — прямую, параллельную CF, а через точку Q — прямую, параллельную BE. Эти прямые и хорды AD, BE и CF разбивают шестиугольник ABCDEF на 13 одинаковых равносторонних треугольников.

Обозначим PQ = 2a. Тогда

Отсюда находим, что a = 3, значит, PQ = 2a = 6,

Следовательно,

 

Ответ:


Аналоги к заданию № 507889: 507912 511502 Все