СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости



Задания
Версия для печати и копирования в MS Word
Задания Д16 C7 № 512464

а) Найдите наименьшее натуральное число такое, что оно не является делителем 100!

б) Определите, на какую наибольшую степень 10 делится 100!

в) Найдите последнюю ненулевую цифру в записи числа, равного 100!

Решение.

а) Ясно, что число 100! делится на все натуральные числа от 1 до 100. Несложно проверить, что число 101 является простым, поэтому 100! на него не делится (в разложении 100! на простые множители нет простых множителей, больших ста).

б) Разложим число 100! на простые множители. Среди чисел от 1 до 100 ровно 20 (5,10,15,...) делится на 5, и еще 4 (25,50,75,100) делятся на , поэтому число 5 будет входить в разложение в двадцать четвертой степени. Ясно, что число 2 будет входить в разложение 100! в степени, большей, чем 24. Поэтому 100! делится на , и не делится на

в) Рассмотрим сначала последнюю цифру произведения всех чисел от 1 до 100, не кратных 5. Для этого посчитаем последнюю цифру произведения Она равна 6. Последняя цифра произведения тоже будет 6. Сделаем, однако, хитрость и число в произведение не включим. Тогда последняя цифра произведения будет равна 4. Аналогично, последняя цифра произведения всех чисел от 1 до 100, не кратных 5, исключая число 64, будет равна 4, так как при умножении чисел, заканчивающихся на 6 и на 4, получается число, заканчивающееся на 4. Теперь посмотрим на последнюю ненулевую цифру числа Она равна последней ненулевой цифре произведения Последняя ненулевая цифра такого произведения равна 1.

В итоге получаем, что последняя ненулевая цифра числа 100! равна 4 (произведение чисел, оканчивающихся на 1 и 4, оканчивается на 4).

 

Ответ: а) 101; б) 24; в) 4.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 137.