Первая окружность с центром O, вписанная в равнобедренный треугольник KLM, касается боковой стороны KL в точке B, а основания ML — в точке A. Вторая окружность с центром O1 касается основания ML и продолжений боковых сторон.
а) Докажите, что треугольник OLO1 прямоугольный.
б) Найдите радиус второй окружности, если известно, что радиус первой равен 15 и AK = 32.
а) Пусть окружность с центром O1 касается продолжения боковой стороны KL в точке C. Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому LO и LO1 — биссектрисы смежных углов KLM и CLM. Следовательно, ∠OLO1 = 90°.
б) Прямоугольные треугольники KBO и KAL подобны, поэтому
Значит,
Пусть радиус окружности с центром O1 равен r1. Треугольник KLM
равнобедренный, поэтому окружности с центрами O и O1 касаются основания ML в одной и той же точке A. Значит, точка A лежит на отрезке OO1, причём LA — высота прямоугольного треугольника OLO1, проведённая из вершины прямого угла. Следовательно,

