СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 16 № 514375

Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны.

а) Докажите, что биссектрисы углов при вершинах B и C четырёхугольника ABCD, пересекаются на стороне AD.

б) Пусть N — точка пересечения этих биссектрис. Найдите площадь четырёхугольника ABCD, если известно, что BM : MC = 3 : 4, а площадь четырёхугольника, стороны которого лежат на прямых AM, DM, BN и CN, равна 24.

Решение.

а) Пусть K — середина отрезка AM. Треугольник AMB равнобедренный, поэтому отрезок BK является в нём медианой, биссектрисой и высотой. Поскольку прямые DM и AM перпендикулярны, прямая KB|| MD и содержит среднюю линию треугольника AMD, то есть проходит через середину стороны AD. Аналогично, биссектриса угла MCD тоже проходит через середину стороны AD. Следовательно, биссектрисы углов B и C четырёхугольника ABCD пересекаются на стороне AD.

б) Пусть прямые AM и BN пересекаются в точке K, а прямые DM и CN — в точке L. Тогда четырёхугольник KMLN — прямоугольник.

Аналогично,

Тогда

 

Ответ: б) 98.


Аналоги к заданию № 514375: 519903 Все

Источник: За­да­ния 16 (С4) ЕГЭ 2015
Классификатор планиметрии: Многоугольники и их свойства