СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 17 № 517503

В июле 2020 года планируется взять кредит в банке на сумму 147 000 рублей. Условия его возврата таковы:

— каждый январь долг увеличивается на 10% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.

Сколько рублей будет выплачено банку, если известно, что кредит будет полностью погашен двумя равными платежами, то есть за два года.

Решение.

В июле 2020 года долг составлял 147 тыс. руб. После начисления 10% он стал составлять 147 + 14,7 = 161,7 тыс. руб. Пусть первая выплата была равна x тыс. руб. Тогда долг на июль 2021 года стал составлять 161,7 − x тыс. руб.

После второго начисления процентов сумма долга составила (161,7 − x)1,1 = 177,87 − 1,1x. Этот долг был погашен вторым платежом, равным x, откуда получаем уравнение 177,87 − 1,1x = x. Из этого уравнения находим x = 84,7 тыс. руб. Поэтому банку было выплачено 2x = 169,4 тыс. руб.

 

Приведём решение в общем случае.

Пусть сумма кредита равна S, а годовые составляют а%. Тогда оставшаяся сумма долга умножается на коэффициент b = 1 + 0,01а. После первой выплаты сумма долга составит S1 = Sb − X. После второй выплаты сумма долга составит

По условию кредит будет погашен двумя платежами, поэтому откуда

При S = 147 000 и а = 10, получаем: b = 1,1 и

(тыс. рублей).

 

Ответ: 169 400 рублей.

Источник: ЕГЭ — 2017. Ос­нов­ная волна 02.06.2017. Вариант 991 (C часть)., За­да­ния 17 (С5) ЕГЭ 2017, Резервная волна ЕГЭ по математике 24.06.2019. Вариант 992
Раздел кодификатора ФИПИ/Решу ЕГЭ: Задачи о кредитах, Банки, вклады, кредиты