Задания
Версия для печати и копирования в MS Word

Ре­ши­те не­ра­вен­ство: 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби минус 1 пра­вая круг­лая скоб­ка плюс 2 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби минус 1 пра­вая круг­лая скоб­ка минус 3 боль­ше или равно 0.

Спрятать решение

Ре­ше­ние.

Пусть t = 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби минус 1 пра­вая круг­лая скоб­ка , тогда t в квад­ра­те плюс 2t минус 3 боль­ше или равно 0, от­ку­да t мень­ше или равно минус 3 или t боль­ше или равно 1. Вернёмся к ис­ход­ной пе­ре­мен­ной, по­лу­чим:

 со­во­куп­ность вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби минус 1 пра­вая круг­лая скоб­ка мень­ше или равно минус 3,3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 1 конец со­во­куп­но­сти . рав­но­силь­но 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 1 \underset 3 боль­ше 1 \mathop рав­но­силь­но дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби минус 1 боль­ше или равно 0 рав­но­силь­но дробь: чис­ли­тель: 1 минус x, зна­ме­на­тель: x конец дроби боль­ше или равно 0 рав­но­силь­но 0 мень­ше x мень­ше или равно 1.

Ответ: (0; 1].

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 563576: 563549 Все

Источники:
Классификатор алгебры: Об­ласть опре­де­ле­ния не­ра­вен­ства, По­ка­за­тель­ные урав­не­ния и не­ра­вен­ства
Методы алгебры: Вве­де­ние за­ме­ны, Метод ин­тер­ва­лов