Задания
Версия для печати и копирования в MS Word
Тип 13 № 628639
i

а)  Ре­ши­те урав­не­ние  левая круг­лая скоб­ка \ctg левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ко­си­нус в квад­ра­те x плюс дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби синус 2x пра­вая круг­лая скоб­ка =0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; 3 Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем урав­не­ние:

 левая круг­лая скоб­ка \ctg левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ко­си­нус в квад­ра­те x плюс дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби синус 2x пра­вая круг­лая скоб­ка =0 рав­но­силь­но левая круг­лая скоб­ка тан­генс x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­си­нус в квад­ра­те x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус x ко­си­нус x пра­вая круг­лая скоб­ка =0 рав­но­силь­но

 рав­но­силь­но левая круг­лая скоб­ка тан­генс x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­си­нус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус x пра­вая круг­лая скоб­ка =0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний тан­генс x=1, тан­генс x= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k,x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k, конец со­во­куп­но­сти . k при­над­ле­жит Z .

б)  Отберём корни при по­мо­щи еди­нич­ной окруж­но­сти. Под­хо­дят  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби ,  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби ,  дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 6 конец дроби ,  дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 4 конец дроби ,  дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 6 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k:k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби ,  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби ,  дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 6 конец дроби ,  дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 4 конец дроби ,  дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 6 конец дроби .

 

При­ме­ча­ние.

За­ме­тим, что точки еди­нич­ной окруж­но­сти, в ко­то­рых  ко­си­нус x=0, не яв­ля­ют­ся ре­ше­ни­я­ми урав­не­ния, по­сколь­ку в них не су­ще­ству­ет \ctg левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка , по­это­му пре­об­ра­зо­ва­ние

 левая круг­лая скоб­ка тан­генс x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­си­нус в квад­ра­те x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус x ко­си­нус x пра­вая круг­лая скоб­ка =0 рав­но­силь­но левая круг­лая скоб­ка тан­генс x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­си­нус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус x пра­вая круг­лая скоб­ка =0

яв­ля­ет­ся вер­ным.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 390
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, сво­ди­мые к целым на синус или ко­си­нус, Три­го­но­мет­ри­че­ские урав­не­ния, сво­ди­мые к целым на тан­генс или ко­тан­генс
Методы алгебры: Фор­му­лы при­ве­де­ния
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Три­го­но­мет­ри­че­ские урав­не­ния