Задания
Версия для печати и копирования в MS Word

а)  Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка плюс 2 синус 2 x плюс 81 пра­вая круг­лая скоб­ка =4.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем ис­ход­ное урав­не­ние:

 ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка плюс 2 синус 2 x плюс 81 пра­вая круг­лая скоб­ка = 4 рав­но­силь­но ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус x плюс 2 синус 2x плюс 81 = 3 в сте­пе­ни 4 рав­но­силь­но
 рав­но­силь­но ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус x плюс 4 синус x ко­си­нус x = 0 рав­но­силь­но синус x левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 4 ко­си­нус x пра­вая круг­лая скоб­ка = 0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний синус x =0, ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 4 ко­си­нус x =0 конец со­во­куп­но­сти . рав­но­силь­но
 рав­но­силь­но со­во­куп­ность вы­ра­же­ний синус x =0 , ко­си­нус x = минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= Пи k,x= арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс 2 Пи k, x= минус арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс 2 Пи k конец со­во­куп­но­сти . рав­но­силь­но рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= Пи k,x= Пи минус арк­ко­си­нус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, x= минус Пи плюс арк­ко­си­нус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k , конец со­во­куп­но­сти . k при­над­ле­жит Z .

б)  Вы­яс­ним, какие из най­ден­ных кор­ней при­над­ле­жат от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка , при по­мо­щи три­го­но­мет­ри­че­ской окруж­но­сти. Под­хо­дят: π, 2π и  Пи плюс арк­ко­си­нус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка Пи k; \pm левая круг­лая скоб­ка Пи минус арк­ко­си­нус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс 2 Пи k : k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б) π,  Пи плюс арк­ко­си­нус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби , 2π.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б)

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше0
Мак­си­маль­ный балл2
Классификатор алгебры: Урав­не­ния сме­шан­но­го типа, Ло­га­риф­ми­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, сво­ди­мые к целым на синус или ко­си­нус
Методы алгебры: Фор­му­лы двой­но­го угла, Фор­му­лы при­ве­де­ния