Каталог заданий
Версия для печати и копирования в MS Word
1
Тип 17 № 510102
i

Две окруж­но­сти ка­са­ют­ся внут­рен­ним об­ра­зом в точке A, причём мень­шая про­хо­дит через центр боль­шей. Хорда BC боль­шей окруж­но­сти ка­са­ет­ся мень­шей в точке P. Хорды AB и AC пе­ре­се­ка­ют мень­шую окруж­ность в точ­ках K и M со­от­вет­ствен­но.

а)  До­ка­жи­те, что пря­мые KM и BC па­рал­лель­ны.

б)  Пусть L  — точка пе­ре­се­че­ния от­рез­ков KM и AP. Най­ди­те AL, если ра­ди­ус боль­шей окруж­но­сти равен 10, а BC  =  16.


Аналоги к заданию № 510102: 519907 641163 Все