СДАМ ГИА






Каталог заданий . Классическое определение вероятности
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
Условие
1

За­да­ние 4 № 1001. На эк­за­мен вы­не­се­но 60 во­про­сов, Ан­дрей не вы­учил 3 из них. Най­ди­те ве­ро­ят­ность того, что ему по­па­дет­ся вы­учен­ный во­прос.

Аналоги к заданию № 1001: 1002 1003 1004 1005 1006 1007 1008 1009 1010

Показать решение

Условие
2

За­да­ние 4 № 1011. В фирме такси в дан­ный мо­мент сво­бод­но 20 машин: 10 чер­ных, 2 жел­тых и 8 зе­ле­ных. По вы­зо­ву вы­еха­ла одна из машин, слу­чай­но ока­зав­ша­я­ся ближе всего к за­каз­чи­це. Най­ди­те ве­ро­ят­ность того, что к ней при­е­дет зе­ле­ное такси.

Аналоги к заданию № 1011: 1012 1013 1014 1015 1016 1017 1018 1019 1020

Условие
3

За­да­ние 4 № 1024. На та­рел­ке 16 пи­рож­ков: 7 с рыбой, 5 с ва­ре­ньем и 4 с виш­ней. Юля на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что он ока­жет­ся с виш­ней.

Аналоги к заданию № 1024: 1025 1026 1027 1028

Показать решение

Условие
4

За­да­ние 4 № 282853. В слу­чай­ном экс­пе­ри­мен­те бро­са­ют две иг­раль­ные кости. Най­ди­те ве­ро­ят­ность того, что в сумме вы­па­дет 8 очков. Ре­зуль­тат округ­ли­те до сотых.
Показать решение

Условие
5

За­да­ние 4 № 282854. В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно один раз.
Показать решение

Условие
6

За­да­ние 4 № 282855. В чем­пи­о­на­те по гим­на­сти­ке участ­ву­ют 20 спортс­ме­нок: 8 из Рос­сии, 7 из США, осталь­ные — из Китая. По­ря­док, в ко­то­ром вы­сту­па­ют гим­наст­ки, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен­ка, вы­сту­па­ю­щая пер­вой, ока­жет­ся из Китая.
Условие
7

За­да­ние 4 № 282856. В сред­нем из 1000 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 5 под­те­ка­ют. Най­ди­те ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет.
Условие
8

За­да­ние 4 № 282857. Фаб­ри­ка вы­пус­ка­ет сумки. В сред­нем на 100 ка­че­ствен­ных сумок при­хо­дит­ся во­семь сумок со скры­ты­ми де­фек­та­ми. Най­ди­те ве­ро­ят­ность того, что куп­лен­ная сумка ока­жет­ся ка­че­ствен­ной. Ре­зуль­тат округ­ли­те до сотых.
Показать решение

Условие
9

За­да­ние 4 № 282858. В со­рев­но­ва­ни­ях по тол­ка­нию ядра участ­ву­ют 4 спортс­ме­на из Фин­лян­дии, 7 спортс­ме­нов из Дании, 9 спортс­ме­нов из Шве­ции и 5 — из Нор­ве­гии. По­ря­док, в ко­то­ром вы­сту­па­ют спортс­ме­ны, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен, ко­то­рый вы­сту­па­ет по­след­ним, ока­жет­ся из Шве­ции.
Условие
10

За­да­ние 4 № 285922. На­уч­ная кон­фе­рен­ция про­во­дит­ся в 5 дней. Всего за­пла­ни­ро­ва­но 75 до­кла­дов — пер­вые три дня по 17 до­кла­дов, осталь­ные рас­пре­де­ле­ны по­ров­ну между чет­вер­тым и пятым днями. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что до­клад про­фес­со­ра М. ока­жет­ся за­пла­ни­ро­ван­ным на по­след­ний день кон­фе­рен­ции?
Условие
11

За­да­ние 4 № 285923. Кон­курс ис­пол­ни­те­лей про­во­дит­ся в 5 дней. Всего за­яв­ле­но 80 вы­ступ­ле­ний — по од­но­му от каж­дой стра­ны. В пер­вый день 8 вы­ступ­ле­ний, осталь­ные рас­пре­де­ле­ны по­ров­ну между остав­ши­ми­ся днями. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что вы­ступ­ле­ние пред­ста­ви­те­ля Рос­сии со­сто­ит­ся в тре­тий день кон­кур­са?
Показать решение

Условие
12

За­да­ние 4 № 285924. На се­ми­нар при­е­ха­ли 3 уче­ных из Нор­ве­гии, 3 из Рос­сии и 4 из Ис­па­нии. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что вось­мым ока­жет­ся до­клад уче­но­го из Рос­сии.

Условие
13

За­да­ние 4 № 285925. Перед на­ча­лом пер­во­го тура чем­пи­о­на­та по бад­мин­то­ну участ­ни­ков раз­би­ва­ют на иг­ро­вые пары слу­чай­ным об­ра­зом с по­мо­щью жре­бия. Всего в чем­пи­о­на­те участ­ву­ет 26 бад­мин­то­ни­стов, среди ко­то­рых 10 участ­ни­ков из Рос­сии, в том числе Рус­лан Орлов. Най­ди­те ве­ро­ят­ность того, что в пер­вом туре Рус­лан Орлов будет иг­рать с каким-либо бад­мин­то­ни­стом из Рос­сии?
Показать решение

Условие
14

За­да­ние 4 № 285926. В сбор­ни­ке би­ле­тов по био­ло­гии всего 55 би­ле­тов, в 11 из них встре­ча­ет­ся во­прос по бо­та­ни­ке. Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку до­ста­нет­ся во­прос по бо­та­ни­ке.
Условие
15

За­да­ние 4 № 285927. В сбор­ни­ке би­ле­тов по ма­те­ма­ти­ке всего 25 би­ле­тов, в 10 из них встре­ча­ет­ся во­прос по не­ра­вен­ствам. Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку не до­ста­нет­ся во­про­са по не­ра­вен­ствам.
Условие
16

За­да­ние 4 № 285928. На чем­пи­о­на­те по прыж­кам в воду вы­сту­па­ют 25 спортс­ме­нов, среди них 8 пры­гу­нов из Рос­сии и 9 пры­гу­нов из Па­раг­вая. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что ше­стым будет вы­сту­пать пры­гун из Па­раг­вая.
Показать решение

Условие
17

За­да­ние 4 № 320169. Вася, Петя, Коля и Лёша бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру дол­жен будет Петя.

Аналоги к заданию № 320169: 320331 320333 320335 320337 320339 320341 320343

Условие
18

За­да­ние 4 № 320170. В чем­пи­о­на­те мира участ­ву­ют 16 ко­манд. С по­мо­щью жре­бия их нужно раз­де­лить на че­ты­ре груп­пы по че­ты­ре ко­ман­ды в каж­дой. В ящике впе­ре­меш­ку лежат кар­точ­ки с но­ме­ра­ми групп:

 

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

 

Ка­пи­та­ны ко­манд тянут по одной кар­точ­ке. Ка­ко­ва ве­ро­ят­ность того, что ко­ман­да Рос­сии ока­жет­ся во вто­рой груп­пе?

Условие
19

За­да­ние 4 № 320178. На кла­ви­а­ту­ре те­ле­фо­на 10 цифр, от 0 до 9. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но на­жа­тая цифра будет чётной?

Аналоги к заданию № 320178: 320841 320849 320851 320843 320845 320847 320853

Показать решение

Условие
20

За­да­ние 4 № 320179. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ное на­ту­раль­ное число от 10 до 19 де­лит­ся на три?
Показать решение

Условие
21

За­да­ние 4 № 320181. В груп­пе ту­ри­стов 5 че­ло­век. С по­мо­щью жре­бия они вы­би­ра­ют двух че­ло­век, ко­то­рые долж­ны идти в село в ма­га­зин за про­дук­та­ми. Ту­рист А. хотел бы схо­дить в ма­га­зин, но он под­чи­ня­ет­ся жре­бию. Ка­ко­ва ве­ро­ят­ность того, что А. пойдёт в ма­га­зин?

Аналоги к заданию № 320181: 321005 321007 321009 321011

Условие
22

За­да­ние 4 № 320183. Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет мо­нет­ку, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Физик» иг­ра­ет три матча с раз­ны­ми ко­ман­да­ми. Най­ди­те ве­ро­ят­ность того, что в этих играх «Физик» вы­иг­ра­ет жре­бий ровно два раза.
Условие
23

За­да­ние 4 № 320184. Иг­раль­ный кубик бро­са­ют два­жды. Сколь­ко эле­мен­тар­ных ис­хо­дов опыта бла­го­при­ят­ству­ют со­бы­тию «А = сумма очков равна 5»?

Аналоги к заданию № 320184: 321041 321043 321045 321047 321049

Показать решение

Условие
24

За­да­ние 4 № 320185. В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что в пер­вый раз вы­па­да­ет орёл, а во вто­рой — решка.


Аналоги к заданию № 320185: 321051 321053 321055 321057 321059 321061

Условие
25

За­да­ние 4 № 320186. На рок-фе­сти­ва­ле вы­сту­па­ют груп­пы — по одной от каж­дой из за­яв­лен­ных стран. По­ря­док вы­ступ­ле­ния опре­де­ля­ет­ся жре­би­ем. Ка­ко­ва ве­ро­ят­ность того, что груп­па из Дании будет вы­сту­пать после груп­пы из Шве­ции и после груп­пы из Нор­ве­гии? Ре­зуль­тат округ­ли­те до сотых.
Показать решение

Условие
26

За­да­ние 4 № 320189. В не­ко­то­ром го­ро­де из 5000 по­явив­ших­ся на свет мла­ден­цев 2512 маль­чи­ков. Най­ди­те ча­сто­ту рож­де­ния де­во­чек в этом го­ро­де. Ре­зуль­тат округ­ли­те до ты­сяч­ных.


Источник: Демонстрационная версия ЕГЭ—2014 по математике.
Условие
27

За­да­ние 4 № 320190. На борту самолёта 12 мест рядом с за­пас­ны­ми вы­хо­да­ми и 18 мест за пе­ре­го­род­ка­ми, раз­де­ля­ю­щи­ми са­ло­ны. Осталь­ные места не­удоб­ны для пас­са­жи­ра вы­со­ко­го роста. Пас­са­жир В. вы­со­ко­го роста. Най­ди­те ве­ро­ят­ность того, что на ре­ги­стра­ции при слу­чай­ном вы­бо­ре места пас­са­жи­ру В. до­ста­нет­ся удоб­ное место, если всего в самолёте 300 мест.
Условие
28

За­да­ние 4 № 320191. На олим­пиа­де в вузе участ­ни­ков рас­са­жи­ва­ют по трём ауди­то­ри­ям. В пер­вых двух по 120 че­ло­век, остав­ших­ся про­во­дят в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. При подсчёте вы­яс­ни­лось, что всего было 250 участ­ни­ков. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.
Условие
29

За­да­ние 4 № 320192. В клас­се 26 че­ло­век, среди них два близ­не­ца — Ан­дрей и Сер­гей. Класс слу­чай­ным об­ра­зом делят на две груп­пы по 13 че­ло­век в каж­дой. Най­ди­те ве­ро­ят­ность того, что Ан­дрей и Сер­гей ока­жут­ся в одной груп­пе.
Показать решение

Условие
30

За­да­ние 4 № 320193. В фирме такси в на­ли­чии 50 лег­ко­вых ав­то­мо­би­лей; 27 из них чёрные с жёлтыми над­пи­ся­ми на бор­тах, осталь­ные — жёлтые с чёрными над­пи­ся­ми. Най­ди­те ве­ро­ят­ность того, что на слу­чай­ный вызов при­е­дет ма­ши­на жёлтого цвета с чёрными над­пи­ся­ми.
Показать решение

Условие
31

За­да­ние 4 № 320194. В груп­пе ту­ри­стов 30 че­ло­век. Их вер­толётом в не­сколь­ко приёмов за­бра­сы­ва­ют в труд­но­до­ступ­ный район по 6 че­ло­век за рейс. По­ря­док, в ко­то­ром вер­толёт пе­ре­во­зит ту­ри­стов, слу­ча­ен. Най­ди­те ве­ро­ят­ность того, что ту­рист П. по­ле­тит пер­вым рей­сом вер­толёта.
Условие
32

За­да­ние 4 № 320195. Ве­ро­ят­ность того, что новый DVD-про­иг­ры­ва­тель в те­че­ние года по­сту­пит в га­ран­тий­ный ре­монт, равна 0,045. В не­ко­то­ром го­ро­де из 1000 про­дан­ных DVD-про­иг­ры­ва­те­лей в те­че­ние года в га­ран­тий­ную ма­стер­скую по­сту­пи­ла 51 штука. На сколь­ко от­ли­ча­ет­ся ча­сто­та со­бы­тия «га­ран­тий­ный ре­монт» от его ве­ро­ят­но­сти в этом го­ро­де?
Показать решение

Условие
33

За­да­ние 4 № 320208. В кар­ма­не у Миши было че­ты­ре кон­фе­ты — «Гри­льяж», «Бе­лоч­ка», «Ко­ров­ка» и «Ла­сточ­ка», а также ключи от квар­ти­ры. Вы­ни­мая ключи, Миша слу­чай­но вы­ро­нил из кар­ма­на одну кон­фе­ту. Най­ди­те ве­ро­ят­ность того, что по­те­ря­лась кон­фе­та «Гри­льяж».
Условие
34

За­да­ние 4 № 320209. Ме­ха­ни­че­ские часы с две­на­дца­ти­ча­со­вым ци­фер­бла­том в какой-то мо­мент сло­ма­лись и пе­ре­ста­ли хо­дить. Най­ди­те ве­ро­ят­ность того, что ча­со­вая стрел­ка за­сты­ла, до­стиг­нув от­мет­ки 10, но не дойдя до от­мет­ки 1 час.


Источник: Проб­ный экзамен по математике. Санкт-Петербург 2013. Вариант 1.
Показать решение

Условие
35

За­да­ние 4 № 325904. За круг­лый стол на 9 сту­льев в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 7 маль­чи­ков и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что обе де­воч­ки будут си­деть рядом.
Условие
36

За­да­ние 4 № 325905. За круг­лый стол на 5 сту­льев в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 3 маль­чи­ка и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что обе де­воч­ки будут си­деть рядом.

 

Условие
37

За­да­ние 4 № 325907.

За круг­лый стол на 5 сту­льев в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 3 маль­чи­ка и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что обе де­воч­ки не будут си­деть рядом.

 

Условие
38

За­да­ние 4 № 325909. За круг­лый стол на 201 стул в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 199 маль­чи­ков и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что между двумя де­воч­ка­ми будет си­деть один маль­чик.

 

Условие
39

За­да­ние 4 № 325913. За круг­лый стол на 9 сту­льев в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 7 маль­чи­ков и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что обе де­воч­ки не будут си­деть рядом.

 

Условие
40

За­да­ние 4 № 325915. За круг­лый стол на 101 сту­л в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 99 маль­чи­ков и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что между двумя де­воч­ка­ми будет си­деть один маль­чик.
Условие
41

За­да­ние 4 № 325917. За круг­лый стол на 17 сту­льев в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 15 маль­чи­ков и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что обе де­воч­ки будут си­деть рядом.

 

Условие
42

За­да­ние 4 № 504533. Из мно­же­ства на­ту­раль­ных чисел от 25 до 39 на­уда­чу вы­би­ра­ют одно число. Ка­ко­ва ве­ро­ят­ность того, что оно де­лит­ся на 5?


Источник: МИОО: Ди­а­гно­сти­че­ская ра­бо­та по ма­те­ма­ти­ке 13.03.2014 ва­ри­ант МА10505.
Показать решение

Условие
43

За­да­ние 4 № 509081. У Вити в ко­пил­ке лежит 12 рублёвых, 6 двух­рублёвых, 4 пя­ти­рублёвых и 3 де­ся­ти­рублёвых мо­не­ты. Витя на­у­гад достаёт из ко­пил­ки одну мо­не­ту. Най­ди­те ве­ро­ят­ность того, что остав­ша­я­ся в ко­пил­ке сумма со­ста­вит более 70 руб­лей.

Аналоги к заданию № 509081: 509110 510935



Источник: Проб­ный эк­за­мен по ма­те­ма­ти­ке Кировского района Санкт-Петербурга, 2015. Ва­ри­ант 1.
Показать решение

Условие
44

За­да­ние 4 № 509110. У Дины в ко­пил­ке лежит 7 рублёвых, 5 двух­рублёвых, 6 пя­ти­рублёвых и 2 де­ся­ти­рублёвых мо­не­ты. Дина на­у­гад достаёт из ко­пил­ки одну мо­не­ту. Най­ди­те ве­ро­ят­ность того, что ­остав­ша­я­ся в ко­пил­ке сумма со­ста­вит менее 60 руб­лей.
Условие
45

За­да­ние 4 № 509569. Ве­ро­ят­ность того, что новый элек­три­че­ский чай­ник про­слу­жит боль­ше года, равна 0,93. Ве­ро­ят­ность того, что он про­слу­жит боль­ше двух лет, равна 0,87. Най­ди­те ве­ро­ят­ность того, что он про­слу­жит мень­ше двух лет, но боль­ше года.
Условие
46

За­да­ние 4 № 509916. Из рай­он­но­го цен­тра в де­рев­ню еже­днев­но ходит ав­то­бус. Ве­ро­ят­ность того, что в по­не­дель­ник в ав­то­бу­се ока­жет­ся мень­ше 18 пас­са­жи­ров, равна 0,82. Ве­ро­ят­ность того, что ока­жет­ся мень­ше 10 пас­са­жи­ров, равна 0,51. Най­ди­те ве­ро­ят­ность того, что число пас­са­жи­ров будет от 10 до 17.
Условие
47

За­да­ние 4 № 509987. На чем­пи­о­на­те по прыж­кам в воду вы­сту­па­ют 20 спортс­ме­нов, среди них 3 пры­гу­на из Чехии и 2 пры­гу­на из Бо­ли­вии. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ре­бьев­кой. Най­ди­те ве­ро­ят­ность того, что две­на­дца­тым будет вы­сту­пать пры­гун из Чехии.
Условие
48

За­да­ние 4 № 510061. Если гросс­мей­стер А иг­ра­ет бе­лы­ми, то он вы­иг­ры­ва­ет у гросс­мей­сте­ра Б с ве­ро­ят­но­стью 0,5. Если А иг­ра­ет чер­ны­ми,  то А вы­иг­ры­ва­ет у Б с ве­ро­ят­но­стью 0,3. Гросс­мей­сте­ры А и Б иг­ра­ют две пар­тии, при­чем во вто­рой пар­тии ме­ня­ют цвет фигур. Най­ди­те ве­ро­ят­ность того, что А вы­иг­ра­ет оба раза.
Условие
49

За­да­ние 4 № 512326. В не­ко­то­ром го­ро­де из 2000 по­явив­ших­ся на свет мла­ден­цев 980 де­во­чек. Най­ди­те ча­сто­ту рож­де­ния маль­чи­ков в этом го­ро­де.


Источник: СтатГрад: Тренировочная ра­бо­та по ма­те­ма­ти­ке 24.09.2015 ва­ри­ант МА10107.
Условие
50

За­да­ние 4 № 512347. В клас­се 26 уча­щих­ся, среди них два друга — Олег и Ми­ха­ил. Класс слу­чай­ным об­ра­зом раз­би­ва­ют на 2 рав­ные груп­пы. Най­ди­те ве­ро­ят­ность того, что Олег и Ми­ха­ил ока­жут­ся в одной груп­пе.


Источник: СтатГрад: Тренировочная ра­бо­та по ма­те­ма­ти­ке 18.12.2015 ва­ри­ант МА10211.
Условие
51

За­да­ние 4 № 512368. В не­ко­то­ром го­ро­де из 2000 по­явив­ших­ся на свет мла­ден­цев 1080 маль­чи­ков. Най­ди­те ча­сто­ту рож­де­ния де­во­чек в этом го­ро­де.


Источник: СтатГрад: Тренировочная ра­бо­та по ма­те­ма­ти­ке 24.09.2015 ва­ри­ант МА10108.
Условие
52

За­да­ние 4 № 512389. В клас­се 21 уча­щий­ся, среди них два друга — Вадим и Олег. Класс слу­чай­ным об­ра­зом раз­би­ва­ют на 3 рав­ные груп­пы. Най­ди­те ве­ро­ят­ность того, что Вадим и Олег ока­жут­ся в одной груп­пе.


Источник: СтатГрад: Тренировочная ра­бо­та по ма­те­ма­ти­ке 18.12.2015 ва­ри­ант МА10212.
Условие
53

За­да­ние 4 № 513335. Ве­ро­ят­ность того, что на те­сти­ро­ва­нии по ма­те­ма­ти­ке уча­щий­ся П. верно решит боль­ше 7 задач, равна 0,78. Ве­ро­ят­ность того, что П. верно решит боль­ше 6 задач, равна 0,89. Най­ди­те ве­ро­ят­ность того, что П. верно решит ровно 7 задач.


Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по математике 20.01.2016 ва­ри­ант МА10309
Условие
54

За­да­ние 4 № 513356. Ве­ро­ят­ность того, что на те­сти­ро­ва­нии по ис­то­рии уча­щий­ся Т. верно решит боль­ше 8 задач, равна 0,58. Ве­ро­ят­ность того, что Т. верно решит боль­ше 7 задач, равна 0,64. Най­ди­те ве­ро­ят­ность того, что Т. верно решит ровно 8 задач.


Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по ма­те­ма­ти­ке 20.01.2016 ва­ри­ант МА10310
Условие
55

За­да­ние 4 № 513418. На олим­пиа­де по фи­зи­ке 450 участ­ни­ков раз­ме­сти­ли в трёх ауди­то­ри­ях. В пер­вых двух уда­лось раз­ме­стить по 180 че­ло­век, остав­ших­ся пе­ре­ве­ли в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.


Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по математике 03.03.2016 ва­ри­ант МА10409
Условие
56

За­да­ние 4 № 513437. На олим­пиа­де по ис­то­рии 400 участ­ни­ков раз­ме­сти­ли в трёх ауди­то­ри­ях. В пер­вых двух уда­лось раз­ме­стить по 150 че­ло­век, остав­ших­ся пе­ре­ве­ли в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.


Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по ма­те­ма­ти­ке 03.03.2016 ва­ри­ант МА10410
Условие
57

За­да­ние 4 № 514016. В ма­га­зи­не стоят два платёжных ав­то­ма­та. Каж­дый из них может быть не­ис­пра­вен с ве­ро­ят­но­стью 0,05 не­за­ви­си­мо от дру­го­го ав­то­ма­та. Най­ди­те ве­ро­ят­ность того, что хотя бы один ав­то­мат ис­пра­вен.


Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по математике 27.04.2016 ва­ри­ант МА10509
Условие
58

За­да­ние 4 № 514035. В ма­га­зи­не стоят два платёжных ав­то­ма­та. Каж­дый из них может быть не­ис­пра­вен с ве­ро­ят­но­стью 0,03 не­за­ви­си­мо от дру­го­го ав­то­ма­та. Най­ди­те ве­ро­ят­ность того, что хотя бы один ав­то­мат ис­пра­вен.


Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по ма­те­ма­ти­ке 27.04.2016 ва­ри­ант МА10510

Пройти тестирование по этим заданиям

     О проекте

© Гущин Д. Д., 2011—2016

общее/сайт/предмет

Рейтинг@Mail.ru
Яндекс.Метрика