Задания
Версия для печати и копирования в MS WordЗадание 12 № 245180
Найдите наибольшее значение функции
Решение.
Поскольку функция возрастающая, она достигает наибольшего значения в той точке, в которой достигает наибольшего значения выражение, стоящее под знаком логарифма. Квадратный трехчлен
с отрицательным старшим коэффициентом достигает наибольшего значения в точке
в нашем случае — в точке −1. Значение функции в этой точке
Ответ: 4.
Аналоги к заданию № 245180: 287205 287303 500960 287207 287209 287211 287213 287215 287217 287219 ... Все
Классификатор базовой части: 3.2.1 Монотонность функции. Промежутки возрастания и убывания, 3.2.5 Точки экстремума функции, 3.2.6 Наибольшее и наименьшее значения функции, 3.3.3 Квадратичная функция, её график, 3.3.7 Логарифмическая функция, её график
4-2*(-1)=4+2=6 (- на - дает + "4-(-2)")
Поэтому 6-1+3=8
Вы не взяли логарифм от квадратного трехчлена.
log5(4 - 2*(-1) - 1) + 3 = log5(4 + 2 - 1) + 3 = log5(5) + 3 = 1 + 3 = 4.