Задания
Версия для печати и копирования в MS Word
Тип 5 № 25605

 

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

 

Решение.

Это задание ещё не решено, приводим решение прототипа.


Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5:

2 умножить на 5 умножить на 5 плюс 2 умножить на 3 умножить на 5 плюс 2 умножить на 3 умножить на 5=110.

Ответ: 110.

 

Приведем другое решение.

Найдем площадь поверхности многогранника как сумму площадей его граней: горизонтальных, боковых и фронтальных (расположенных спереди и сзади). Рассмотрим горизонтальные грани. Площадь нижней грани равна 5 · 5 = 25. Есть также две верхние грани. Если посмотреть на многогранник сверху, то эти две верхние грани сольются в одну, равную нижней грани. Таким образом, сумма их площадей равна площади нижней грани, то есть 25.

Рассмотрим боковые грани. Площадь левой грани равна 5 · 3 = 15. Есть также две грани справа. Если посмотреть на многогранник справа, то эти две грани сольются в одну, равную левой грани. Таким образом, сумма их площадей равна площади левой грани, то есть 15.

Рассмотрим фронтальные грани. Площадь задней грани равна 5 · 3 = 15. Две передние грани в сумме равны задней грани, таким образом, сумма их площадей тоже равна 15.

Следовательно, площадь поверхности многогранника равна

2 · 25 (горизонтальные грани) + 2 · 15 (боковые грани) + 2 · 15 (фронтальные грани) = 110.

 

Примечание.

Заметим, что площадь поверхности данного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5. Именно так решена эта задача первым способом.


Аналоги к заданию № 25601: 25603 25609 505146 505167 25605 25607 Все