Задания
Версия для печати и копирования в MS Word
Тип 13 № 485996
i

а)  Ре­ши­те урав­не­ние  синус 2x=2 синус x минус ко­си­нус x плюс 1.

б)  Ука­жи­те корни урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 2 Пи , минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем урав­не­ние:

2 синус x ко­си­нус x минус 2 синус x плюс ко­си­нус x минус 1=0 рав­но­силь­но левая круг­лая скоб­ка ко­си­нус x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 синус x плюс 1 пра­вая круг­лая скоб­ка =0 рав­но­силь­но

 рав­но­силь­но со­во­куп­ность вы­ра­же­ний  новая стро­ка ко­си­нус x=1,  новая стро­ка синус x= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби  конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний  новая стро­ка x=2 Пи k,  новая стро­ка x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k,  новая стро­ка x= минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k,  конец со­во­куп­но­сти .k при­над­ле­жит Z .

б)  С по­мо­щью чис­ло­вой окруж­но­сти от­бе­рем корни на от­рез­ке  левая квад­рат­ная скоб­ка минус 2 Пи , минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка . Это числа  минус 2 Пи и  минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .

Ответ: а)  левая фи­гур­ная скоб­ка 2 Пи k, минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k, минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k:k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  минус 2 Пи ; минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 485973: 485996 509626 651029 ... Все

Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли
Методы алгебры: Фор­му­лы двой­но­го угла, Груп­пи­ров­ка
Гость 26.04.2012 09:39

Здрав­ствуй­те. При ре­ше­нии урав­не­ния sin x = -1/2. По пер­вой фор­му­ле x1=arcsin(-1/2)+2Пn во­про­сов нет, а с на­хож­де­ни­ем вто­ро­го корня есть во­прос: x2= П-arcsin(-1/2)+2Пn, зна­чит, x2= 7П/6+2Пn? За­ра­нее бла­го­да­рен!

Служба поддержки

Серии 7п/6 + 2пk и −5п/6 + 2пk оди­на­ко­вы. Для того, чтобы от­би­рать корни, нам удоб­нее вто­рое пред­став­ле­ние.