Задания
Версия для печати и копирования в MS Word

а)  Ре­ши­те урав­не­ние 4 синус в квад­ра­те x плюс 8 синус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка плюс 1=0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; дробь: чис­ли­тель: минус 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем урав­не­ние:

4 синус в квад­ра­те x плюс 8 синус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка плюс 1=0 рав­но­силь­но 4 левая круг­лая скоб­ка 1 минус ко­си­нус в квад­ра­те x пра­вая круг­лая скоб­ка минус 8 ко­си­нус x плюс 1=0.

Пре­об­ра­зу­ем урав­не­ние даль­ше:

4 ко­си­нус в квад­ра­те x плюс 8 ко­си­нус x минус 5=0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , ко­си­нус x= минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби конец со­во­куп­но­сти рав­но­силь­но x=\pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k,k при­над­ле­жит Z .

б)  При по­мо­щи три­го­но­мет­ри­че­ской окруж­но­сти отберём корни, ле­жа­щие на от­рез­ке  левая квад­рат­ная скоб­ка минус 3 Пи ; дробь: чис­ли­тель: минус 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка :x= минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 3 конец дроби , минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби .

 

Ответ: а) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k,k при­над­ле­жит Z ; б)  минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 3 конец дроби , минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 511392: 504850 513093 514649 Все

Источник: Проб­ный ЕГЭ по ма­те­ма­ти­ке Санкт-Пе­тер­бург 2014. Ва­ри­ант 2
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли
Методы алгебры: Фор­му­лы при­ве­де­ния