СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задания Д7 C2 № 505635

В правильный тетраэдр ABCD вписан шар. Из точки D на грань ABC тетраэдра опущена высота DE. Точка P является серединой отрезка DE. Через точку P проведена плоскость, перпендикулярно к DE. Из всех точек, которые принадлежат одновременно шару и проведенной плоскости, взята точка O, являющаяся ближайшей к точке A. Найти расстояние от точки O до грани ABD, если объем шара равен 1.

Решение.

Пусть площадь основания тетраэдра равна S, а высота h. Тогда радиус описанной сферы равен поэтому середина высоты DE (точка P) лежит на поверхности шара и противоположна E. Плоскость, перпендикулярная DE, параллельна плоскости основания пирамиды, поэтому является касательной плоскостью к шару. Следовательно, O совпадает с P.

Опустим перпендикуляры из O и центра шара на грань ABD. Образуются два подобных прямоугольных треугольника, причем коэффициент подобия равен поэтому

Осталось найти r. Поскольку то поэтому ответ

 

Ответ:

Классификатор стереометрии: Вписанный шар, Комбинации круглых тел, Правильный тетраэдр, Расстояние от точки до плоскости, Шар