Задания
Версия для печати и копирования в MS WordНайдите все пары натуральных чисел m и n, являющиеся решениями уравнения 3n − 2m = 1.
Решение.
Спрятать критерииПусть n — четное число Тогда
Правая часть — произведение двух последовательных четных чисел, каждое из которых является степенью числа 2. Значит,
и
откуда
и
При этом
следовательно,
Пусть теперь n — нечетное число. Все нечетные степени тройки делятся на 4 с остатком 3. Значит,
делится на 4 с остатком 2. Из равенства
получаем, что в этом случае
(если
то
делится на 4 без остатка). При этом
откуда
Ответ: или
Классификатор алгебры: Числа и их свойства

