СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задания Д7 C2 № 508167

В правильной четырехугольной пирамиде PABCD каждое ребро равно 12. На ребре PC отмечена точка K так, что PK : KC = 1 : 3.

а) Докажите, что линия пересечения плоскостей ABK и PCD параллельна плоскости ABC.

б) Найдите площадь сечения пирамиды плоскостью ABK.

Решение.

а) Проведем в плоскости PCD прямую KT, параллельную CD. Поскольку то и Поэтому точки A, B, K, T лежат в одной плоскости и искомое переечение плоскостей — прямая KT. Она параллельна плоскости основания пирамиды, поскольку параллельна CD.

б) Рассмотрим трапецию ABKT. В ней Очевидно, что треугольник PKT равносторонний, поэтому

По теореме косинусов из треугольника BPK имеем

Опустим теперь в трапеции высоту KH на основание AB. Тогда и по теореме Пифагора для треугольника BKH получаем

Наконец,

 

Ответ:

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 98.
Классификатор стереометрии: Деление отрезка, Параллельность прямой и плоскости, Площадь сечения, Правильная четырёхугольная пирамида, Сечение, проходящее через три точки