Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма — это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое пяти оставшихся оценок.
а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться
б) Может ли эта разность рейтингов, вычисленных по старой и новой системам оценивания, равняться
в) Найдите наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания.
Обозначим рейтинг кинофильма, вычисленный по старой системе оценивания, через A, а рейтинг кинофильма, вычисленный по новой системе оценивания, через B.
а) Заметим, что где m и n — некоторые натуральные числа.
Значит, Если
то
что невозможно.
Таким образом, разность рейтингов, вычисленных по старой и новой системам оценивания, не может равняться
б) Например, для оценок экспертов 0, 1, 2, 4, 7, 8, 9 разность рейтингов, вычисленных по старой и новой системам оценивания, равна
в) Пусть x — наименьшая из оценок, z — наибольшая, а y — сумма остальных пяти оценок. Тогда
Для оценок экспертов 0, 1, 2, 3, 4, 5, 10 разность A − B равна . Значит, наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания, равно
Ответ: а) нет; б) да; в)