Задания
Версия для печати и копирования в MS Word
Тип 15 № 509581
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 4x плюс 4x в квад­ра­те пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка конец дроби \leqslant минус 1.

Спрятать решение

Ре­ше­ние.

Пре­об­ра­зу­ем не­ра­вен­ство:

 си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка \leqslant минус 1,x плюс 1 не равно 1. конец си­сте­мы .

Сде­ла­ем за­ме­ну y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка . По­лу­ча­ем:  левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка y\leqslant минус 1; левая круг­лая скоб­ка y плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те \leqslant0;y= минус 1.

Сде­ла­ем об­рат­ную за­ме­ну:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка = минус 1. Тогда

 си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =1,x плюс 1 боль­ше 0,1 минус 2x не равно 1,x плюс 1 не равно 1 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний минус 2x в квад­ра­те минус x=0,x боль­ше минус 1,x не равно 0, конец си­сте­мы .

от­ку­да x = −0,5.

 

Ответ: −0,5.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 509581: 509928 Все

Классификатор алгебры: Не­ра­вен­ства с ло­га­риф­ма­ми по пе­ре­мен­но­му ос­но­ва­нию, Не­ра­вен­ства, ра­ци­о­наль­ные от­но­си­тель­но ло­га­риф­ми­че­ской функ­ции
Методы алгебры: Вве­де­ние за­ме­ны
Кодификатор ФИПИ/Решу ЕГЭ: 2.2.9 Метод ин­тер­ва­лов